
Table of Contents
Introduction and Executive Summary 3

Modernizing ACME-1 with NestJS Microservices 3

NestJS and Microservices: A Foundation for Scalability 3

System Architecture and Design 4

Service Boundaries and Responsibilities 4

Communication and Data Format 4

Technology Stack 4

NestJS Features 4

Architecture Diagram 5

Technology Stack and Tools 5

Core Technologies 5

Data Storage 5

Messaging 5

DevOps and Deployment 6

Justification 6

Security and Compliance Strategy 6

Authentication and Authorization 7

Data Protection 7

Compliance 7

Development Process and Timeline 7

Project Phases and Milestones 7

Project Tracking and Quality Assurance 8

Project Timeline 8

Testing and Quality Assurance 9

Testing Frameworks and Tools 9

Automated Testing and CI/CD 9

Quality Metrics 9

Deployment and Scalability Plan 10

Deployment Strategy 10

Containerization and Orchestration 10

Scaling Mechanisms 11

Team Roles and Responsibilities 11

Key Personnel 11

Page 1 of 14

Development Team 11

Quality Assurance 11

Communication and Collaboration 12

Cost Estimation and Resource Allocation 12

Development and Operational Costs 12

Resource Allocation 12

Contingency Budget 13

Risks and Mitigation Strategies 13

Technical Risks 13

Security Risks 14

Project Risks 14

Conclusion and Next Steps 14

Next Steps 14

Page 2 of 14

Introduction and Executive Summary

This document presents a proposal from Docupal Demo, LLC to Acme, Inc (ACME-1)
for the development of a modern, scalable microservices architecture utilizing
NestJS. Our proposal addresses ACME-1's need to modernize its legacy system,
overcoming challenges related to inefficient data processing, limited scalability, and
difficulties integrating new features. The intended audience for this proposal
includes ACME-1's IT Department, executive leadership, and project stakeholders.

Modernizing ACME-1 with NestJS Microservices

The primary objective of this project is to transition ACME-1's legacy system to a
suite of independent, yet interconnected, microservices. These microservices will be
built using NestJS, a powerful Node.js framework for building efficient and scalable
server-side applications. This transition will allow for more agile development
cycles, improved fault isolation, and independent scaling of individual services
based on demand.

NestJS and Microservices: A Foundation for Scalability

Microservices represent an architectural approach where an application is
structured as a collection of small, autonomous services, modeled around a business
domain. Each service is responsible for a specific function and can be developed,
deployed, and scaled independently. NestJS provides a robust set of tools and
abstractions that simplify the development of these microservices. Leveraging
TypeScript, NestJS promotes maintainability, testability, and scalability, making it
an ideal choice for ACME-1's modernization efforts. The proposed microservice
architecture will enable ACME-1 to efficiently process data, seamlessly integrate new
functionalities, and achieve a level of scalability previously unattainable with the
legacy system.

System Architecture and Design

We propose a microservice architecture built with NestJS to address ACME-1's needs.
This approach divides the application into independent, manageable services. Each
service handles a specific business function.

Page 3 of 14

Service Boundaries and Responsibilities

The core of our design includes three primary microservices:

User Management Service: Manages user accounts, authentication, and
authorization. It handles user registration, profile updates, and access control.
Order Processing Service: Handles order creation, modification, and
fulfillment. It manages the order lifecycle from placement to delivery.
Inventory Management Service: Tracks product inventory levels, updates
stock quantities, and manages product information. It provides real-time
inventory data.

Communication and Data Format

These microservices will communicate using gRPC. gRPC offers high performance
and efficient communication. We will use JSON for data formatting within the gRPC
messages. This ensures data is easily readable and compatible across services.

Technology Stack

The technology stack will be based on:

NestJS: A progressive Node.js framework for building efficient, scalable, and
reliable server-side applications.
gRPC: A high-performance, open-source universal RPC framework.
JSON: A lightweight data-interchange format.
PostgreSQL: A powerful, open-source relational database system (used
individually in each microservice).

NestJS Features

NestJS features enhance the architecture by:

Modules: Organizing code into reusable modules, facilitating dependency
injection and improving maintainability.
Controllers: Handling incoming requests and routing them to the appropriate
service logic.
Interceptors: Transforming requests and responses, adding cross-cutting
concerns like logging and authentication.

Page 4 of 14

Architecture Diagram

Technology Stack and Tools

We propose a modern technology stack optimized for building scalable,
maintainable, and robust microservices using NestJS. Our selection prioritizes
open-source technologies with strong community support.

Core Technologies

NestJS: We will use NestJS, a progressive Node.js framework, for building
efficient and scalable server-side applications. Its modular architecture
promotes maintainability and testability, aligning with our goals for long-term
project success.

TypeScript: We will write all code in TypeScript, a superset of JavaScript,
adding static typing benefits. This will improve code quality, reduce errors, and
enhance developer productivity.

Data Storage

PostgreSQL: We will use PostgreSQL as the primary database for persistent
data storage needs of each microservice. PostgreSQL is a powerful, open-
source relational database known for its reliability, data integrity, and
extensibility.

Messaging

RabbitMQ: We will implement asynchronous communication between
microservices using RabbitMQ. This message broker enables decoupling of
services, improving resilience and scalability.

DevOps and Deployment

Docker: We will use Docker for containerizing each microservice.
Containerization ensures consistent execution environments across different
stages, from development to production.

Page 5 of 14

Kubernetes: We will deploy and manage the containerized microservices using
Kubernetes. This platform automates deployment, scaling, and management of
containerized applications.

Jenkins: We will use Jenkins for continuous integration (CI). Automated builds
and tests triggered on code commits ensure code quality and accelerate the
development lifecycle.

Justification

The selected technologies are well-suited for building microservices due to:

Scalability: Docker and Kubernetes enable horizontal scaling of services to
handle increased load. RabbitMQ facilitates asynchronous communication,
preventing bottlenecks.
Maintainability: NestJS's modular architecture and TypeScript's static typing
enhance code maintainability.
Reliability: PostgreSQL provides robust data storage, and RabbitMQ ensures
reliable message delivery.
Developer Productivity: NestJS provides a structured development
environment, while TypeScript improves code clarity and reduces errors.
Jenkins automates build and test processes.

Security and Compliance Strategy

We will implement a robust security strategy for ACME-1's microservices, focusing
on authentication, authorization, data protection, and compliance.

Authentication and Authorization

Each microservice will use JWT (JSON Web Tokens) for authentication. This ensures
only verified users and services can access protected resources. We will implement
role-based access control (RBAC) to manage authorization. RBAC will restrict access
based on the user's role, ensuring proper data access.

Page 6 of 14

Data Protection

We will protect sensitive data both at rest and in transit. Encryption will be used to
secure data stored within databases and file systems. For data in transit, we will
enforce HTTPS for all communication between microservices and clients. This
prevents eavesdropping and data tampering. Access controls will be enforced at the
database level. Only authorized services and users will be able to access specific
data.

Compliance

ACME-1 must comply with GDPR and PCI DSS. Our design will incorporate features
and controls to meet these requirements. For GDPR, we will implement data
minimization techniques. We will also provide mechanisms for data access,
rectification, and erasure. For PCI DSS, we will follow best practices for securing
cardholder data. This includes encryption, access controls, and regular security
assessments. Our team has experience building compliant systems and will work
closely with ACME-1 to ensure all requirements are met. We will conduct regular
security audits and penetration testing to identify and address vulnerabilities. We
will also maintain detailed documentation of our security measures for audit
purposes.

Development Process and Timeline

We will use an Agile development methodology for this project. This allows for
flexibility and continuous improvement throughout the development lifecycle. Our
process emphasizes collaboration, iterative development, and responding to change.

Project Phases and Milestones

The project is divided into three key phases, each focused on developing a specific
microservice:

Phase 1: User Management Microservice (8 weeks): This phase will focus on
building the User Management Microservice. Key activities include designing
the database schema, implementing user authentication and authorization,
and developing APIs for user management.

Page 7 of 14

Phase 2: Order Processing Microservice (10 weeks): This phase will focus on
building the Order Processing Microservice. Key activities include designing
the database schema, integrating with payment gateways, and developing APIs
for order creation, modification, and fulfillment.
Phase 3: Inventory Management Microservice (8 weeks): This phase will
focus on building the Inventory Management Microservice. Key activities
include designing the database schema, implementing inventory tracking and
management features, and developing APIs for inventory updates and
reporting.

Project Tracking and Quality Assurance

We will use Jira to track tasks, manage sprints, and monitor progress. Regular sprint
reviews will be conducted to demonstrate progress and gather feedback. Automated
test reports will provide insights into code quality and identify potential issues early
on.

Project Timeline

The following timeline outlines the key milestones and deadlines for each phase:

Page 8 of 14

Testing and Quality Assurance

We will employ rigorous testing and quality assurance practices throughout the
NestJS microservice development lifecycle. This approach ensures a reliable,
performant, and maintainable system for ACME-1. Our testing strategy covers
various levels, from individual components to the entire integrated system.

Testing Frameworks and Tools

We will integrate Jest and Supertest with NestJS for comprehensive testing. Jest will
serve as our primary unit testing framework, enabling us to isolate and test
individual functions and modules. Supertest will facilitate integration and end-to-
end testing, allowing us to assess the interaction between different microservices
and external dependencies.

Automated Testing and CI/CD

Automated testing will be a core component of our CI/CD pipeline. We will
implement Jenkins pipelines that trigger on every commit to the codebase. These
pipelines will automatically run unit, integration, and end-to-end tests. This
process allows us to detect and address issues early in the development cycle,
minimizing the risk of introducing bugs into production.

Quality Metrics

We will continuously monitor key quality metrics to ensure the health and stability
of the microservices. These metrics include:

Code Coverage: We aim to achieve high code coverage to ensure that a
significant portion of the codebase is tested.
Bug Density: We will track the number of bugs reported per unit of code to
identify and address potential problem areas.
Response Time: We will monitor the response time of each microservice to
ensure optimal performance and responsiveness.

By closely monitoring these metrics and proactively addressing any issues, we
ensure the delivery of high-quality microservices that meet ACME-1's requirements.

Page 9 of 14

Deployment and Scalability Plan

This section details the deployment strategy and scalability mechanisms for the
NestJS microservices developed for ACME-1. The primary target environment is the
AWS Cloud. We will use containerization and orchestration technologies to ensure
efficient resource utilization, high availability, and seamless scaling.

Deployment Strategy

Our deployment strategy focuses on automation and repeatability. We will
implement a CI/CD pipeline using tools such as Jenkins or GitLab CI to automate the
build, test, and deployment processes. Each microservice will be packaged as a
Docker container, ensuring consistency across different environments. These
containers will then be deployed to a Kubernetes cluster within AWS. Infrastructure
as Code (IaC) principles, using Terraform, will manage the underlying
infrastructure. This approach allows us to provision and manage resources
programmatically, ensuring consistency and reducing manual errors. Blue/Green
deployments will minimize downtime during updates.

Containerization and Orchestration

Docker will containerize each NestJS microservice. This provides a consistent
runtime environment and simplifies deployment across different stages
(development, testing, production). Kubernetes will orchestrate these containers,
managing their lifecycle, scaling, and networking. Kubernetes offers features such
as self-healing, load balancing, and automated rollouts, which are crucial for
maintaining a highly available and scalable system. We will configure Kubernetes
deployments to automatically restart failed containers and distribute traffic evenly
across available instances.

Scaling Mechanisms

We will employ both horizontal and vertical scaling strategies to meet ACME-1's
demands. Horizontal scaling will be achieved through Kubernetes replica sets. We
can easily increase or decrease the number of container replicas based on traffic
load or resource utilization. Kubernetes’ Horizontal Pod Autoscaler (HPA) will
automatically adjust the number of replicas based on CPU utilization or other
custom metrics. Vertical scaling involves increasing the resources (CPU, memory)

Page 10 of 14

allocated to individual containers. This can be done manually or automatically
through Kubernetes’ resource management features. The following chart illustrates
the expected scalability of the microservices:

This chart shows how resources increase as the load increases.

Team Roles and Responsibilities

Our team is structured to ensure clear accountability and efficient execution
throughout the NestJS microservice development project for ACME-1. We have
assigned experienced personnel to each role, ensuring a smooth and successful
project delivery.

Key Personnel

Chief Architect: John Doe, DocuPal Demo, LLC, will lead the architecture and
design efforts. John will be responsible for defining the overall system
architecture, technology stack, and ensuring adherence to best practices.

Development Team

Back-end Developers: They will build the core microservices using NestJS,
focusing on robust API design and efficient data handling.
Front-end Developers: They will focus on developing user interfaces and
integrating them with the back-end microservices.

Quality Assurance

QA Engineers: They will perform rigorous testing of the microservices,
ensuring functionality, performance, and security meet ACME-1's
requirements.

Communication and Collaboration

We will maintain open communication channels through daily stand-ups, dedicated
Slack channels, and weekly cross-team meetings. This approach will ensure
everyone stays informed, issues are addressed promptly, and the project progresses
smoothly.

Page 11 of 14

Cost Estimation and Resource Allocation

This section details the estimated costs and resource allocation for the NestJS
microservice development project. The budget covers development, testing,
deployment, and operational expenses. We have also included a contingency to
address unforeseen issues.

Development and Operational Costs

The projected development cost is $150,000. This covers all activities related to
designing, coding, and initially setting up the microservices. We estimate annual
operational costs to be $30,000. These costs include server maintenance,
monitoring, and ongoing support.

Resource Allocation

We will allocate resources across the project phases as follows:

Development: 60%
Testing: 20%
Deployment: 20%

This distribution ensures that we dedicate sufficient effort to building the
microservices, thoroughly validating their functionality, and deploying them
effectively.

Page 12 of 14

Contingency Budget

A contingency budget of 10% of the total project cost will be reserved. This amounts
to $18,000 (10% of $180,000). This fund will address unexpected challenges or scope
changes that may arise during the project. The total project budget, including
contingency, is $180,000.

Risks and Mitigation Strategies

Our approach to microservice development with NestJS considers several potential
risks. We have outlined mitigation strategies to minimize their impact on the
project.

Technical Risks

Service failures are a primary concern in a distributed microservices architecture.
We will implement robust monitoring and alerting systems. These systems will
provide early warnings of potential issues. Automated failover mechanisms and
redundancy will also be implemented. This will ensure high availability. Network
latency can impact performance. We will optimize inter-service communication.

Page 13 of 14

Strategies include efficient data serialization and caching. Data consistency across
services is another challenge. We will employ eventual consistency patterns. We will
also use distributed transaction management where necessary.

Security Risks

Security vulnerabilities pose a significant threat. We will conduct regular security
audits. Penetration testing will also be performed. These measures will identify
weaknesses in the system. Dependency vulnerability scanning will be implemented.
This will ensure that all third-party libraries are secure.

Project Risks

Schedule and budget overruns are possible. We will proactively manage the project
scope and timeline. If needed, we will re-prioritize features. Phased rollouts will also
be considered. This allows for early delivery of core functionality. It also provides
flexibility to adapt to unforeseen challenges.

Conclusion and Next Steps

This proposal presents a comprehensive plan to modernize ACME-1's infrastructure
using a suite of NestJS microservices. Our approach focuses on creating a scalable,
maintainable, and secure system that aligns with your business objectives. The
proposed architecture emphasizes clear service boundaries, a robust technology
stack, and proactive risk management.

Next Steps

Upon approval of this proposal, the immediate next steps involve setting up the
development environments. We will then initiate the development of the User
Management Microservice. Progress will be measured by system uptime, successful
order processing rates, and customer satisfaction. Your approval signals the
commencement of a strategic partnership aimed at transforming ACME-1's
technological landscape.

Page 14 of 14

