
Table of Contents
Introduction 3

Purpose of Migration 3

Scope of This Proposal 3

Technical Overview of Fastify 3

Core Components 3

Performance and Scalability 4

Plugin and Middleware Ecosystem 4

Performance Benchmarking 5

Benchmarking Tools and Methodology 5

Performance Results 5

Resource Utilization 6

Projected Savings 6

Migration Strategy and Plan 6

Migration Phases 6

Maintaining Backward Compatibility 7

Milestones and Deliverables 7

Timeline 7

Risk Assessment and Mitigation 8

Technical Risks 8

Operational Risks 9

Resource Risks 9

Risk Matrix 9

Testing and Validation 10

Unit Testing 10

Integration Testing 10

Performance Testing 10

Quality Assurance (QA) Plan 11

Validation Criteria 11

Compatibility and Integration 11

API Compatibility 11

Third-Party Integrations 12

Cost-Benefit Analysis 12

Conclusion and Recommendations 13

Page 1 of 13



Feasibility and Strategic Direction 13

Recommended Actions 13

Page 2 of 13



Introduction

This document proposes migrating DocuPal Demo, LLC's existing Node.js and
Express.js infrastructure to Fastify. Our goal is to improve application performance
and developer experience. The existing system includes Node.js with Express.js,
MongoDB, and REST APIs.

Purpose of Migration

We recommend migrating to Fastify to address performance bottlenecks and
modernize the technology stack. Fastify offers increased throughput and reduced
latency compared to Express.js. A successful migration will reduce server costs and
increase developer productivity.

Scope of This Proposal

This proposal details our recommended approach to migrate DocuPal Demo, LLC to
Fastify. This document outlines the components of Fastify, the expected
performance improvements, and the migration strategy. It also addresses potential
risks, costs, and benefits associated with the migration. Finally, it concludes with a
feasibility assessment and proposed next steps for stakeholders.

Technical Overview of Fastify

Fastify is a Node.js web framework focused on speed and efficiency. It offers a
robust set of features designed to improve performance and developer experience
compared to traditional frameworks like Express.js.

Core Components

Fastify's architecture is built around several key components:

Core: The foundation of the framework, handling request routing and lifecycle
management.
Hooks: Provide points in the request lifecycle to execute custom logic, like pre-
validation or pre-serialization.
Plugins: Extend Fastify's functionality with reusable modules.

Page 3 of 13



Decorators: Add custom properties or methods to the Fastify instance, making
them available throughout the application.
Middleware: Supports traditional Express-style middleware for compatibility
with existing solutions.

Performance and Scalability

Fastify excels in performance due to its optimized routing and lower overhead. Its
efficient JSON handling contributes to faster response times. These features make it
ideal for building scalable APIs and web applications.

Plugin and Middleware Ecosystem

Fastify has a rich ecosystem of plugins that simplify common tasks. It is easy to
extend with custom functionality. Fastify also supports existing Express-style
middleware, which allows for easy integration of existing solutions.

Performance Benchmarking

To validate the benefits of migrating to Fastify, we conducted thorough
performance benchmarks. These tests compared Fastify's performance against
DocuPal Demo, LLC's existing Node.js and Express.js infrastructure. We focused on

Page 4 of 13



g
key metrics, including requests per second (RPS) and latency, to quantify potential
improvements.

Benchmarking Tools and Methodology

We utilized industry-standard tools for benchmarking:

Autocannon: A fast HTTP/1.1 benchmarking tool written in Node.js.
wrk: A command-line HTTP benchmarking tool known for its efficiency.

These tools allowed us to simulate realistic traffic loads and accurately measure the
performance of both Fastify and Express.js.

Performance Results

Fastify demonstrated significant performance advantages over Express.js. It
consistently handled a higher volume of requests per second while maintaining
lower latency. This translates to a more responsive and efficient application.

The charts below illustrate the performance improvements observed from 2020 to
2024:

Requests Per Second (RPS)

This bar chart highlights Fastify's superior throughput compared to Express.js over
the past five years.

Latency (Milliseconds)

The line chart showcases Fastify's consistently lower latency, leading to faster
response times.

Resource Utilization

Fastify's optimized architecture results in more efficient resource utilization. This
translates to potential cost savings on server infrastructure due to the ability to
handle more traffic with fewer resources. While the migration may necessitate
some initial training for the DocuPal Demo, LLC team to gain Fastify expertise, the
long-term benefits in terms of reduced infrastructure costs and improved
performance outweigh this investment.

Page 5 of 13



Projected Savings

By migrating to Fastify, DocuPal Demo, LLC can expect to see improvements in
processing power. This processing power results in a direct cost savings.

Migration Strategy and Plan

This migration will transition DocuPal Demo, LLC from its current Node.js and
Express.js infrastructure to Fastify. It encompasses five key phases: Assessment,
Planning, Development, Testing, and Deployment. Each phase has specific goals
and deliverables to ensure a smooth and efficient transition.

Migration Phases

1. Assessment: The initial phase involves a thorough review of the existing
application. This includes analyzing the codebase, identifying dependencies,
and evaluating the current system architecture. The key deliverable is a
detailed assessment report outlining the scope of the migration.

2. Planning: Based on the assessment, a comprehensive migration plan will be
developed. This plan defines the migration timeline, resource allocation, and
specific tasks for each phase. We will also establish clear communication
channels and protocols.

3. Development: This phase focuses on refactoring the existing code to be
compatible with Fastify. This includes rewriting routes, middleware, and other
Express.js-specific components using Fastify equivalents. Backward
compatibility will be maintained through API versioning and compatibility
layers to minimize disruption to existing clients.

4. Testing: Rigorous testing will be conducted to ensure the stability and
performance of the migrated application. This includes unit tests, integration
tests, and performance benchmarks to validate the functionality and efficiency
of the new Fastify application. Successful completion of integration tests is a
critical milestone.

5. Deployment: The final phase involves deploying the migrated application to
the production environment. A phased rollout approach will be adopted to
minimize risks. This includes monitoring the application closely after
deployment to identify and address any issues promptly.

Page 6 of 13



Maintaining Backward Compatibility

To ensure a seamless transition for existing users, we will implement API
versioning. This allows us to introduce new Fastify-based endpoints while still
supporting older Express.js endpoints. Compatibility layers will be created to handle
requests from older clients, translating them into a format compatible with the new
Fastify application.

Milestones and Deliverables

Phase 1 (Assessment) Completion: Detailed assessment report.
Phase 2 (Planning) Completion: Comprehensive migration plan.
Phase 3 (Development) Completion: Refactored codebase compatible with
Fastify.
Phase 4 (Testing) Completion: Successful integration tests and performance
benchmarks.
Phase 5 (Deployment) Completion: Fully deployed and functional Fastify
application.

Timeline

The following Gantt chart illustrates the estimated timeline for each phase of the
migration.

Page 7 of 13



Risk Assessment and Mitigation

Migrating from Express.js to Fastify introduces several potential risks that require
careful consideration and proactive mitigation strategies. These risks span
technical, operational, and resource-related areas.

Technical Risks

Code Incompatibility: Existing Express.js middleware and routes might not be
directly compatible with Fastify. This could lead to significant code refactoring and
potential introduction of bugs. Mitigation: Conduct a thorough code audit to
identify incompatible components. Implement compatibility layers or rewrite
components using Fastify-native approaches. Employ extensive unit and
integration testing to ensure functionality.

Performance Bottlenecks: While Fastify generally offers performance
improvements, unforeseen bottlenecks can arise from inefficient code or
misconfigured settings. Mitigation: Implement performance monitoring tools to
identify slow routes or processes. Optimize database queries and caching strategies.
Conduct load testing to simulate real-world traffic and identify breaking points.

Security Vulnerabilities: Introducing a new framework can expose new security
vulnerabilities if not implemented correctly. Mitigation: Follow security best
practices for Fastify, including input validation, output encoding, and protection
against common web attacks. Perform security audits and penetration testing to
identify and address potential weaknesses. Keep Fastify and all dependencies up to
date with the latest security patches.

Operational Risks

Downtime and Data Loss: Migration inherently carries the risk of service
disruption and potential data loss during the transition. Mitigation: Implement
blue/green deployment strategies to minimize downtime. Perform thorough testing
in a staging environment before deploying to production. Implement robust
database backup and recovery procedures.

Page 8 of 13



Resource Risks

Limited Fastify Experience: The team's current limited experience with Fastify
could slow down the migration process and increase the risk of errors. Mitigation:
Provide targeted training for the development team on Fastify-specific concepts
and best practices. Engage with the Fastify community for support and guidance.
Consider bringing in external Fastify experts to assist with the migration.

Budget Constraints: Limited budget may restrict access to specialized training or
external expertise, potentially affecting the quality and speed of the migration.
Mitigation: Prioritize essential training resources and explore cost-effective
alternatives, such as online courses and community forums. Carefully scope the
migration to focus on critical components and defer non-essential features.

Risk Matrix

To classify and prioritize risks, we use the following risk matrix:

Risk Likelihood Impact Priority Mitigation Strategy

Code
Incompatibility

Medium High High
Code audit, compatibility layers,
extensive testing

Performance
Bottlenecks

Medium Medium Medium
Performance monitoring, query
optimization, load testing

Security
Vulnerabilities

Low High Medium
Security best practices, security
audits, penetration testing,
dependency updates

Downtime/Data
Loss

Low High Medium
Blue/green deployments, staging
environment testing, database
backups

Limited Fastify
Exp.

High Medium High
Targeted training, community
engagement, external expertise

Budget
Constraints

Medium Medium Medium
Prioritize training, cost-effective
alternatives, phased
implementation

Page 9 of 13



Testing and Validation

Comprehensive testing is critical to ensure a smooth and successful Fastify
migration. Our testing strategy covers unit, integration, and performance aspects of
the application. We will leverage Jest and Supertest as our primary testing
frameworks.

Unit Testing

Unit tests will focus on individual components and functions in isolation. These
tests will verify that each unit performs its intended function correctly. Clear and
measurable criteria define the success of unit tests, ensuring code reliability at the
granular level.

Integration Testing

Integration tests will validate the interactions between different parts of the system.
This will confirm that the various components work together as expected after the
migration. Integration tests are crucial for identifying issues arising from the
integration of individual units.

Performance Testing

Performance testing will measure the application's speed, stability, and scalability
under various conditions. We will track performance regression through automated
testing and monitoring tools. This includes load testing and stress testing to
identify bottlenecks and ensure optimal performance. The success criteria include
performance metrics meeting or exceeding pre-migration targets. This ensures no
performance degradation occurs as a result of the migration.

Quality Assurance (QA) Plan

Our QA plan includes rigorous testing at each stage of the migration process.
Dedicated QA engineers will execute test cases, report defects, and verify fixes.
Automated testing will be integrated into the CI/CD pipeline to ensure continuous
quality control. Regression testing will be performed after each code change to
prevent the introduction of new issues.

Page 10 of 13



Validation Criteria

Successful migration verification is defined by several criteria. First, performance
metrics must meet or exceed the targets established before the migration. Second,
all existing features must function correctly after the migration. Third, the
application must demonstrate stability and reliability under production load. These
criteria ensure that the migrated application meets the required standards of
performance, functionality, and stability.

Compatibility and Integration

Our migration strategy acknowledges the importance of maintaining compatibility
with existing systems. Some current Express.js middleware and plugins may not be
directly compatible with Fastify. These components might require adaptation or, in
some cases, replacement with Fastify-native alternatives. We will conduct a
thorough audit to identify these dependencies and determine the best course of
action for each.

API Compatibility

We are committed to minimizing disruption to your existing API contracts. The
migration will primarily focus on leveraging these contracts, which will reduce the
need for extensive changes on the client-side. This approach ensures a smoother
transition and reduces the risk of introducing breaking changes.

Third-Party Integrations

Integrating Fastify with your existing third-party systems will be a phased process.
We will prioritize a gradual integration approach, accompanied by comprehensive
testing at each stage. This will allow us to identify and address any potential issues
early on, ensuring seamless interoperability. We will pay close attention to data
formats, authentication methods, and error handling to ensure that all integrations
function correctly within the Fastify environment.

Page 11 of 13



Cost-Benefit Analysis

Migrating to Fastify involves both initial costs and long-term benefits. The primary
costs include development time for the migration itself, training for the
development team to become proficient with Fastify, and potential expenses for
compatible third-party libraries if needed. These are direct costs associated with the
transition.

Indirect costs might arise from a temporary slowdown in feature delivery as the
team adjusts to the new framework. However, this is expected to be offset by faster
development cycles in the long run.

The benefits are substantial. We anticipate lower server costs due to Fastify's
increased efficiency and reduced resource consumption. There will also be reduced
maintenance overhead because Fastify's architecture promotes code
maintainability. Faster development cycles will lead to quicker time-to-market for
new features, increasing our competitiveness.

Resource Consumption Comparison

The bar chart above illustrates the projected decrease in resource consumption after
migrating to Fastify. The current system's resource usage is indexed at 150, while
Fastify is projected to use only 50 units, representing a significant reduction.

Projected ROI

We expect a positive return on investment (ROI) within the first year after
migration, driven by reduced operational costs and increased development velocity.
While the initial migration requires an investment, the long-term savings and
revenue gains from faster feature releases will outweigh the initial expenses.

Conclusion and Recommendations

Feasibility and Strategic Direction

The evaluation indicates that migrating DocuPal Demo, LLC's existing Node.js and
Express.js infrastructure to Fastify is feasible. Success depends on thorough
planning and dedicated execution. Fastify promises notable performance

Page 12 of 13



enhancements and a streamlined development experience, aligning with DocuPal
Demo, LLC's objectives for scalability and efficiency.

Recommended Actions

To proceed effectively, stakeholders should consider the following actions:

Detailed Assessment: Conduct a comprehensive review of the current system
to pinpoint specific areas for migration and optimization.
Migration Plan Development: Formulate a detailed migration plan. It should
outline timelines, resource allocation, and risk mitigation strategies.
Resource Allocation: Dedicate appropriate resources, including personnel and
budget, to facilitate a smooth and successful migration process.

Page 13 of 13


