
Table of Contents
Introduction and Background 3

About Hapi.js 3

Current State and Motivation for Upgrade 3

Objectives of the Upgrade 3

Proposed Features and Improvements 4

New Feature Integration 4

Performance Optimization 4

Security Enhancements 4

API Changes and Deprecations 4

Compatibility and Migration Strategy 5

Compatibility Considerations 5

Migration Process 6

Migration Effort 6

Risk Assessment and Mitigation 6

Mitigation Strategies 6

Rollback Procedures 6

Testing and Quality Assurance 7

Test Suites 7

Coverage and Validation 7

Implementation Timeline and Resources 7

Project Timeline 8

Resource Allocation 8

Contingency Planning 8

Conclusion and Recommendations 9

Recommendation 9

About Hapi.js (Reusable Block) 9

About Hapi.js 9

Key Features 9

Common Use Cases 10

Hapi.js vs. Other Frameworks 10

References and Resources (Reusable Block) 10

References and Resources 10

Official Documentation 11

Page 1 of 11



Community Resources 11

Upgrade Tools 11

Page 2 of 11



Introduction and Background

This document, prepared by Docupal Demo, LLC, proposes an upgrade to our
existing Hapi.js framework. Our current infrastructure relies on Hapi.js version
17.x.x. This proposal outlines the necessary steps to migrate to a more recent and
supported version. The address for Docupal Demo, LLC is 23 Main St, Anytown, CA
90210, United States, and our base currency is USD.

About Hapi.js

Hapi.js is an open-source, high-performance framework ideal for building scalable
web applications and services. It emphasizes configuration-driven development,
which promotes code reusability and simplifies complex architectures. Hapi.js is
known for its robust plugin system, allowing developers to extend its functionality
with ease.

Current State and Motivation for Upgrade

Our current Hapi.js version 17.x.x, while stable, presents limitations. We are
encountering performance bottlenecks, especially when running newer Node.js
versions. Furthermore, our present version lacks native support for modern
JavaScript features. This makes it challenging to adopt the latest development
practices and maintain optimal application performance.

Objectives of the Upgrade

This upgrade aims to address these limitations by:

Improving overall application performance and efficiency.
Enhancing security with the latest patches and features.
Enabling the use of modern JavaScript syntax and features.
Simplifying codebase maintenance.

Proposed Features and Improvements

This upgrade to a newer Hapi.js version will introduce several key enhancements
designed to improve application performance, security, and maintainability.

Page 3 of 11



New Feature Integration

The upgraded Hapi.js version will natively support async/await, simplifying
asynchronous code management and improving code readability. We will also
upgrade validation capabilities using newer Joi versions. This ensures more robust
and flexible data validation across the application. Enhanced logging capabilities
will provide more detailed insights into application behavior, aiding in debugging
and monitoring.

Performance Optimization

We anticipate a 20% performance improvement. This will be achieved through
optimized routing mechanisms and a reduced memory footprint. These
optimizations will result in faster response times and improved resource utilization.

Security Enhancements

Security will be a key focus of this upgrade. We plan to update all dependencies to
their latest secure versions. Stricter validation rules will be implemented to prevent
common security vulnerabilities, such as injection attacks and data breaches.

API Changes and Deprecations

This upgrade will deprecate some older plugin APIs. These will be replaced with
newer, more efficient alternatives. Comprehensive migration guides will be
provided to assist developers in adapting to these changes. These guides will
include detailed instructions and code examples.

Page 4 of 11



Compatibility and Migration Strategy

Upgrading our Hapi.js version requires careful consideration of compatibility with
our existing codebase and dependencies. We will address potential breaking
changes and ensure a smooth transition to the new version.

Compatibility Considerations

We will maintain backward compatibility where possible. This involves providing
compatibility layers for deprecated features. We will also minimize breaking
changes. Any unavoidable breaking changes will be clearly documented. The
following components require specific attention:

Core routing logic: Routing configurations will be adapted to align with the
new Hapi.js version.
Validation schemas: We will update validation schemas to ensure
compatibility and leverage any new validation features.
Logging configurations: Logging configurations will be reviewed and updated
to maintain consistent and effective logging practices.
Authentication plugins: Authentication plugins will be carefully reviewed. We
will update or replace them as needed to ensure continued security and
functionality.

Page 5 of 11



Migration Process

Our recommended migration timeline is four weeks. The process includes these key
stages:

1. Development Environment Updates: We will first update our development
environments to the new Hapi.js version. This allows developers to adapt to the
new environment and identify any issues early on.

2. Testing: Thorough testing is critical. This includes unit tests, integration tests,
and user acceptance testing (UAT).

3. Production Deployment: After successful testing, we will deploy the updated
application to our production environment.

Migration Effort

Risk Assessment and Mitigation

The Hapi.js upgrade introduces potential risks that need careful consideration.
These risks primarily involve plugin compatibility, the emergence of unexpected
behavior once in the production environment, and potentially longer debugging
times.

Mitigation Strategies

To minimize these risks, we will implement a series of mitigation strategies. First,
we will conduct thorough testing throughout the upgrade process. This includes
unit, integration, and user acceptance testing to identify and resolve any issues early
on. Second, we plan to use staged deployments. By gradually rolling out the updated
application to a subset of users, we can monitor its performance and identify any
unforeseen problems before a full-scale deployment. Finally, we will closely monitor
application performance after the upgrade. This allows us to quickly detect and
address any performance regressions or other issues that may arise.

Rollback Procedures

In the event of critical issues arising from the upgrade, we have established rollback
procedures. These procedures involve reverting to the previous Hapi.js version and
restoring database backups to ensure minimal disruption to service.

Page 6 of 11



Testing and Quality Assurance

We will employ a comprehensive testing strategy to guarantee a stable and
performant application following the Hapi.js upgrade. Our approach includes
extending existing unit tests and implementing new integration tests to cover both
existing and new functionalities.

Test Suites

Our testing will leverage the following suites:

Unit Tests: We will extend our existing Jest-based unit tests. These tests will
validate individual components and functions, ensuring they operate as
expected after the upgrade.
Integration Tests: We will create new integration tests using Supertest. These
tests will focus on validating the interactions between different parts of the
application, especially concerning new features introduced with the Hapi.js
upgrade.

Coverage and Validation

We will ensure that all existing features continue to function correctly post-upgrade.
We will also thoroughly validate all new features for functional correctness and
performance efficiency. Our goal is to achieve a 15-20% improvement in request
processing time and reduced server response latency under load. Load testing will
be performed to simulate real-world traffic scenarios and identify potential
performance bottlenecks.

Implementation Timeline and Resources

The Hapi.js upgrade project will follow a structured timeline with clearly defined
milestones. We aim to complete the development environment setup promptly.
Testing will be a critical phase, ensuring stability and identifying potential issues.
Production deployment will occur only after successful testing.

Page 7 of 11



Project Timeline

Task Start Date End Date

Development Environment Setup 2025-08-26 2025-09-02

Testing 2025-09-03 2025-09-16

Production Deployment 2025-09-17 2025-09-24

Resource Allocation

This project requires key personnel. Two senior Node.js developers will handle the
upgrade and code migration. A QA engineer will focus on rigorous testing.
Infrastructure support will ensure the environment is properly configured.

Contingency Planning

We acknowledge potential delays. Our contingency plans include extending the
testing phase if necessary. We are prepared to delay the production deployment to
ensure a stable release. Allocating additional resources can further mitigate risks.

Page 8 of 11



Conclusion and Recommendations

This proposal highlights the advantages of upgrading our Hapi.js framework from
version 17.x.x to a more recent release. The upgrade offers significant improvements
in application performance and enhanced security measures, ensuring a more
robust and reliable platform. Modernizing our codebase will improve the developer
experience, attract talent, and facilitate future development efforts.

Recommendation

We recommend approving the Hapi.js upgrade project. This includes allocating the
necessary resources as detailed in the resource requirements section and
proceeding with the migration plan. The upgrade promises long-term
maintainability and positions us to leverage the latest features and improvements
within the Hapi.js ecosystem. By taking this step, we will improve our application,
developers, and competitive edge.

About Hapi.js (Reusable Block)

About Hapi.js

Hapi.js is an open-source, configuration-centric framework for building web
applications and services. It is designed for developing robust, scalable, and
maintainable applications.

Key Features

Hapi.js boasts several core features that make it a popular choice for Node.js
development:

Plugin System: Hapi.js utilizes a powerful plugin system. This allows
developers to extend the framework's functionality and reuse code across
different parts of an application.
Route Handling: Hapi.js provides a flexible routing mechanism. This simplifies
the process of defining how the application responds to different HTTP
requests.

Page 9 of 11



Configuration-Centric: Configuration is central to Hapi.js. This encourages
developers to define application behavior through configuration files,
promoting consistency and simplifying deployments.
Request Lifecycle Management: Hapi.js offers comprehensive request lifecycle
management. This provides developers with fine-grained control over how
requests are processed.

Common Use Cases

Hapi.js is commonly employed in building:

RESTful APIs
Web applications
Microservices

Hapi.js vs. Other Frameworks

Compared to other Node.js frameworks, Hapi.js distinguishes itself with its
configuration-centric approach. While Express.js offers a more minimalist and
unopinionated design, Hapi.js encourages a structured approach through
configuration. Newer frameworks like Koa.js have embraced async/await more
extensively than older Hapi.js versions, something addressed in later releases of
Hapi.js.

References and Resources (Reusable
Block)

References and Resources

This section lists resources to support the Hapi.js upgrade.

Official Documentation

The primary source for information is the official Hapi.js documentation. It can be
found at [Hapi.js Official Website]. This site provides comprehensive guides, API
references, and release notes.

Page 10 of 11



Community Resources

Community-led migration guides and tutorials can be found on sites like [Example
Website]. These resources provide practical advice and solutions from other
developers who have completed similar upgrades.

Upgrade Tools

Tools like npm outdated will help identify outdated dependencies. Specific Hapi.js
plugin upgrade utilities will also assist in the upgrade. These tools streamline the
process.

Page 11 of 11


