
Table of Contents
Introduction and Objectives 2

Introduction 2

Objectives 2

Current Performance Analysis 3

Bottleneck Identification 3

Performance Benchmarking 3

Detailed Metric Analysis 3

Optimization Strategies 4

Caching Strategies 4

Asynchronous Processing 4

Server Scaling 5

Code-Level Optimization 5

Load Testing and Benchmarking Plan 6

Tools and Methodologies 6

Success Metrics 6

Expected Improvements 6

Load vs Response Time Projections 7

Monitoring and Maintenance Recommendations 7

Monitoring Tools 7

Key Performance Indicators (KPIs) 7

Proactive Issue Detection 8

Implementation Roadmap 8

Phase 1: Caching Implementation 8

Phase 2: Database Optimization 8

Phase 3: Asynchronous Processing Optimization 8

Phase 4: Code-Level Optimization 8

Phase 5: Server Scaling 9

Conclusion and Expected Outcomes 9

Impact on Users and Business 9

Future Optimization 10

Page 1 of 10



Introduction and Objectives

Introduction

This document, presented by Docupal Demo, LLC, outlines a proposal for
optimizing the performance of Acme, Inc's Hapi.js application. ACME-1's current
infrastructure faces performance challenges that impact user experience and
operational efficiency. Our analysis indicates that high API latency, elevated CPU
usage during peak times, and slow database queries are the primary bottlenecks.

This proposal details a comprehensive strategy to address these issues and
significantly improve the application's performance. Our approach includes code
profiling, database optimization, caching strategies, and infrastructure
adjustments. The goal is to create a faster, more efficient, and scalable Hapi.js
environment for ACME-1.

Objectives

The primary objectives of this Hapi.js performance optimization project are to:

Reduce API response time by 50%: We aim to cut the average API response
time in half, leading to a more responsive user experience.

Decrease CPU usage by 30%: By optimizing code and infrastructure, we
intend to lower CPU utilization during peak hours, reducing operational costs.

Improve overall system throughput: We plan to enhance the system's capacity
to handle requests, ensuring smooth performance even under heavy load.

These objectives will be achieved through a combination of strategic code
improvements, infrastructure enhancements, and proactive monitoring. The
successful implementation of this proposal will result in a more robust, efficient,
and cost-effective Hapi.js application for ACME-1.

Page 2 of 10



Current Performance Analysis

ACME-1's current Hapi.js application performance has been thoroughly analyzed
using a combination of tools and metrics. We utilized New Relic, Hapi-profiler, and
custom logging solutions to gain a comprehensive understanding of the
application's behavior under various loads. Key metrics monitored include CPU
utilization, memory usage, response time, and database query execution time.

Bottleneck Identification

Our analysis has pinpointed several critical bottlenecks that are impacting the
application's overall performance. These include:

Slow Database Queries: Inefficiently written or unindexed database queries
are a primary source of delay.
Inefficient Routing Configuration: The current routing setup appears to be
adding unnecessary overhead.
Lack of Caching: The absence of caching mechanisms results in repeated data
retrieval, increasing latency.
Unoptimized Asynchronous Operations: Asynchronous tasks are not being
handled optimally, leading to performance degradation.

Performance Benchmarking

Currently, the API response time averages 800ms. This exceeds the industry
standard of 500ms. Furthermore, CPU usage frequently peaks at 80%, which
violates the Service Level Agreement (SLA) threshold of 60%. The following chart
illustrates response times under varying loads.

Detailed Metric Analysis

A more granular breakdown of the metrics reveals the following:

CPU Utilization: Consistently high CPU utilization suggests potential areas for
code optimization.
Memory Usage: Memory consumption patterns indicate opportunities for
improved memory management.

Page 3 of 10



Database Query Execution Time: Specific queries are taking an excessively
long time to execute. Further analysis is needed to identify and optimize these
queries.
Response Time: The average API response time is significantly higher than
the target, impacting user experience.

Optimization Strategies

To enhance the performance of ACME-1's Hapi.js applications, we propose a multi-
faceted approach encompassing caching, asynchronous processing improvements,
server scaling, and code-level optimizations.

Caching Strategies

Implementing effective caching mechanisms is crucial for reducing server load and
improving response times. We recommend a combination of the following:

In-Memory Caching: Utilize in-memory data stores like Redis or Memcached
to cache frequently accessed data. This minimizes database interactions and
provides rapid data retrieval.

HTTP Caching: Leverage HTTP caching mechanisms through Varnish to cache
static assets and API responses at the edge. This reduces the load on the Hapi.js
server and improves the user experience.

Database Query Caching: Implement caching at the database level to store the
results of frequently executed queries. This reduces database load and
improves response times for data-intensive operations.

Asynchronous Processing

Optimizing asynchronous operations is critical for maintaining responsiveness and
scalability. The following techniques will be employed:

Async/Await: Adopt async/await syntax for cleaner and more readable
asynchronous code. This simplifies the management of asynchronous
operations and reduces the risk of callback hell.

Page 4 of 10



Promise Chain Optimization: Analyze and optimize promise chains to
minimize unnecessary operations and improve error handling. This ensures
efficient execution of asynchronous tasks.

Background Job Processing: Implement background job processing using
BullMQ for long-running or resource-intensive tasks. This offloads these tasks
from the main request-response cycle, preventing performance bottlenecks.

Server Scaling

To accommodate increasing traffic and ensure high availability, we recommend the
following server scaling strategies:

Vertical Scaling: Increase the resources (CPU, memory) of the existing server
to handle higher loads. This is a simple and cost-effective solution for
moderate traffic increases.

Horizontal Scaling: Implement load balancing across multiple servers using
AWS Auto Scaling. This distributes traffic evenly across multiple instances,
ensuring high availability and scalability.

Code-Level Optimization

Optimizing the codebase can significantly improve performance. We will focus on
the following:

Code Splitting: Implement code splitting to reduce the initial bundle size and
improve page load times. This involves breaking the application into smaller
chunks that are loaded on demand.

Bundle Size Reduction: Minimize the size of JavaScript bundles by removing
unused code, optimizing images, and using code minification techniques.

Data Structure Optimization: Choose the most efficient data structures for
specific tasks to minimize memory usage and improve performance.

Algorithm Optimization: Analyze and optimize algorithms to reduce their
time complexity and improve their efficiency.

Page 5 of 10



Load Testing and Benchmarking Plan

This plan details how we will measure the performance improvements of ACME-1's
Hapi.js application after optimization. We will use industry-standard tools and
methodologies to simulate realistic user traffic and assess the application's behavior
under load.

Tools and Methodologies

We will employ a combination of load testing tools, including LoadView, k6, and
JMeter. These tools will allow us to simulate various real-world user traffic patterns.
Our testing will encompass:

Load Tests: Gradually increasing user load to identify performance
bottlenecks.
Stress Tests: Pushing the system beyond its expected capacity to determine
breaking points.
Endurance Tests: Sustaining a high load over a prolonged period to evaluate
stability.

Success Metrics

We will define success based on the following key performance indicators (KPIs):

API Response Time: The target is an average response time of less than
400ms.
CPU Utilization: We aim to keep CPU utilization below 50%.
Error Rate: The acceptable error rate is less than 1%.
Throughput: Measured in transactions per second (TPS), indicating the
system's capacity.

Expected Improvements

We anticipate significant improvements in performance under heavy traffic
conditions. Specifically, we expect to see:

API response time decrease to approximately 350ms.
CPU utilization reduced to around 45%.
Throughput increased by approximately 40%.

Page 6 of 10



Load vs Response Time Projections

The following chart illustrates projected load vs. response time for various
optimization scenarios.

The following bar chart illustrates projected throughput increase after optimization.

Monitoring and Maintenance
Recommendations

Effective monitoring and maintenance are crucial for sustained Hapi.js application
performance. We recommend implementing a comprehensive strategy that includes
real-time monitoring, proactive issue detection, and automated testing.

Monitoring Tools

Consider integrating tools like Prometheus, Grafana, and the ELK Stack. These
solutions offer robust capabilities for collecting, visualizing, and analyzing
performance data from your Hapi.js applications.

Key Performance Indicators (KPIs)

Continuously track the following metrics to gain insights into your application's
health:

API Response Time: Measures the time taken to respond to API requests.
CPU Utilization: Tracks the percentage of CPU resources being used.
Memory Usage: Monitors the amount of memory consumed by the
application.
Error Rate: Indicates the frequency of errors occurring in the application.
Database Query Performance: Assesses the efficiency of database queries.
Network Latency: Measures the delay in network communication.

Proactive Issue Detection

Implement automated performance testing as part of your CI/CD pipeline. Establish
performance gates to prevent the deployment of code that introduces performance
regressions. Utilize real-time monitoring dashboards with alerts to quickly identify

Page 7 of 10



and address performance issues as they arise.

Implementation Roadmap

Our approach to Hapi.js performance optimization at ACME-1 will be structured in
five distinct phases. This phased approach allows for controlled implementation
and continuous monitoring of improvements. The estimated timeline for the
complete implementation is 8 weeks.

Phase 1: Caching Implementation

We will begin by implementing caching mechanisms to reduce the load on the
application servers and database. This includes identifying frequently accessed data
and implementing appropriate caching strategies.

Phase 2: Database Optimization

Next, we will focus on optimizing database queries and schema. This involves
analyzing slow queries, adding indexes, and optimizing data structures. A database
administrator will be essential in this phase.

Phase 3: Asynchronous Processing Optimization

This phase addresses long-running tasks by implementing asynchronous
processing using queues and background workers to prevent blocking the main
event loop.

Phase 4: Code-Level Optimization

In this phase, we'll conduct a thorough code review to identify and address
performance bottlenecks. This includes optimizing algorithms, reducing memory
usage, and minimizing unnecessary computations. Two senior engineers will be
dedicated to this task.

Page 8 of 10



Phase 5: Server Scaling

The final phase involves scaling the Hapi.js application across multiple servers to
handle increased traffic and ensure high availability. A DevOps engineer will
configure load balancing and monitor server performance.

Resource Allocation

Two Senior Engineers
One Database Administrator
One DevOps Engineer

Potential Risks and Dependencies

Potential downtime during implementation.
Compatibility issues with existing systems.
Unforeseen performance bottlenecks that may require additional
investigation.

Conclusion and Expected Outcomes

The performance optimization strategies outlined in this proposal are projected to
yield significant improvements for ACME-1's Hapi.js application. We anticipate a
50% reduction in API response times. This will translate to a faster and more
responsive experience for end-users. A decrease of 30% in CPU utilization is also
expected. This efficiency gain will lower infrastructure costs and improve system
stability.

Impact on Users and Business

These improvements will directly benefit ACME-1's business goals. Faster response
times should improve user experience and increase customer satisfaction. These
enhancements can lead to higher conversion rates. Reduced infrastructure costs will
further contribute to ACME-1's bottom line.

Page 9 of 10



Future Optimization

We recommend ongoing monitoring and optimization of the system. Exploring new
technologies and implementing predictive scaling are also suggested. Refining
caching strategies should also be considered as a future step. These measures will
ensure sustained performance and scalability.

Page 10 of 10


