
Table of Contents
Introduction 3

Purpose 3
Scope 3
Why Hapi.js? 3

Project Objectives and Scope 3

Core Functionalities 4
Scope Boundaries 4
Success Measurement 4

Technical Architecture and Design 5

Plugin Architecture 5
Integration with Hapi.js 5
Design Patterns 5
Technology Stack 5

Development Plan and Timeline 6

Project Phases and Milestones 6
Task Prioritization 6
Estimated Timelines 6
Gantt Chart Visualization 7

Testing Strategy and Quality Assurance 7

Testing Methodologies 7
Testing Tools and Frameworks 8
Quality Assurance Metrics 8

Security Considerations 8

Data Protection 9
Compliance 9

Deployment and Maintenance 9

Versioning and Updates 9
Rollback Strategy 9
Long-Term Maintenance 9

Potential Risks and Mitigation Strategies 10

Risk Identification 10
Mitigation Strategies 10

Team and Stakeholders 10

Page 1 of 11



Project Team 11
Communication 11

Conclusion and Next Steps 11

Call to Action 11
Upcoming Milestones and Communication 11

Page 2 of 11



Introduction

This document presents a proposal from Docupal Demo, LLC to Acme, Inc (ACME-1)
for the development of a custom Hapi.js plugin. Our goal is to enhance ACME-1's
existing application by adding real-time document collaboration features. This
plugin will allow multiple users to work on documents simultaneously, fostering
teamwork and improving productivity.

Purpose

The primary aim of this project is to seamlessly integrate real-time collaboration
into ACME-1's current workflow. The new features will allow for concurrent editing,
synchronized updates, and immediate feedback, all within a familiar document
interface.

Scope

This proposal details the development, integration, and deployment of the Hapi.js
plugin. It outlines the plugin's functionalities, dependencies, and the overall
development process. We will also cover quality assurance, security measures, and
ongoing maintenance considerations.

Why Hapi.js?

We have chosen Hapi.js for its robust plugin system, scalability, and configuration-
centric approach. Hapi.js offers a predictable and reliable framework for building
modular and maintainable applications. By leveraging Hapi.js plugins, we can
ensure that the core application remains lean and focused, while easily extending its
capabilities. Plugins enhance modularity, reusability, and maintainability.

Project Objectives and Scope

The primary objective is to develop a Hapi.js plugin that seamlessly integrates real-
time document collaboration features into ACME-1's existing application. This
plugin will enable multiple users to simultaneously edit documents, fostering
teamwork and efficiency.

Page 3 of 11



Core Functionalities

The plugin will provide the following key functionalities:

Real-time collaborative editing: Allowing multiple users to work on the same
document simultaneously.
Version control: Tracking document changes and enabling users to revert to
previous versions.
User presence: Displaying which users are currently viewing or editing a
document.
Access control: Managing user permissions and ensuring secure document
access.

Scope Boundaries

This project focuses on the development and integration of the core real-time
collaboration features mentioned above. The initial release will not include offline
editing capabilities. Future iterations may incorporate additional features based on
user feedback and ACME-1's evolving needs.

Success Measurement

Success will be measured by:

User adoption rate: The percentage of users actively utilizing the collaboration
features.
Successful document collaborations: The number of documents
collaboratively edited without significant issues.
System stability: Ensuring the plugin operates reliably and does not negatively
impact the existing application's performance.

Technical Architecture and Design

The real-time document collaboration plugin will be built as a standard Hapi.js
plugin, ensuring seamless integration with ACME-1's existing Hapi.js infrastructure.
We will leverage Hapi.js's built-in plugin registration system for easy installation
and management. The plugin will be designed with modularity in mind, allowing
for future extensions and customizations.

Page 4 of 11



Plugin Architecture

The core of the plugin will consist of several key components. A real-time
communication module, powered by Socket.IO, will manage bidirectional
communication between clients and the server. This enables instant updates and
synchronized editing. A document management module will handle document
storage, retrieval, and version control. We will design this module to be database-
agnostic, with potential support for databases like Mongoose or Sequelize.

Integration with Hapi.js

The plugin will integrate with ACME-1’s existing Hapi.js server through its standard
extension points. Authentication will be handled by leveraging existing Hapi.js
ecosystem plugins, ensuring consistent user identity across the application. Data
validation will also utilize existing Hapi.js plugins to secure and validate input. The
plugin will register new routes to manage document-related operations, like
creating, opening, saving, and sharing documents. These routes will be protected by
ACME-1's existing authentication strategy.

Design Patterns

We will implement the Strategy Pattern to handle different document storage
strategies. This will allow ACME-1 to switch between different database solutions
without modifying the core plugin logic. The Observer Pattern will be used to
manage real-time updates to the document. When a user edits a document, the
changes will be broadcast to all other active users in real-time.

Technology Stack

The plugin will be developed using Node.js and Hapi.js. The front-end will leverage
Draft.js, a rich text editor framework, to provide a collaborative editing experience.
Socket.IO will facilitate real-time communication. Depending on ACME-1’s existing
infrastructure, we will use either Mongoose or Sequelize for database interaction.
All code will be written in JavaScript, adhering to modern coding standards and best
practices.

Page 5 of 11



Development Plan and Timeline

DocuPal Demo, LLC will follow a phased approach to develop the Hapi.js plugin for
ACME-1. This ensures a structured and efficient development process. We will
prioritize critical functionalities to deliver value quickly.

Project Phases and Milestones

The project is divided into three key phases:

Phase 1: Core Real-Time Editing. This phase focuses on implementing the
fundamental real-time document editing capabilities.
Phase 2: Version Control Implementation. This phase integrates version
control features, allowing users to track and revert to previous document
versions.
Phase 3: User Presence and Access Control. This phase will implement user
presence indicators and access control mechanisms.

Task Prioritization

We will prioritize tasks based on their impact on core functionality. Real-time
editing will be our initial focus, followed by version control and then user presence
and access control. This ensures that the most critical features are delivered early.

Estimated Timelines

Each phase has a defined timeline:

Phase 1: 4 weeks
Phase 2: 3 weeks
Phase 3: 3 weeks

This results in a total development timeline of 10 weeks.

Gantt Chart Visualization

The following Gantt chart visualizes the project phases and timelines:

Page 6 of 11



Testing Strategy and Quality Assurance

Our testing strategy ensures the Hapi.js plugin meets ACME-1's requirements for
functionality, performance, and security. We use a multi-faceted approach
incorporating various testing methodologies throughout the development lifecycle.

Testing Methodologies

We employ several testing types:

Unit Tests: These tests verify individual components and functions in
isolation.
Integration Tests: These confirm the interaction between different parts of
the plugin and with the existing ACME-1 application.
Performance Tests: These evaluate the plugin's responsiveness and stability
under different load conditions.
Security Tests: These identify potential vulnerabilities and ensure the plugin
protects sensitive data.

Page 7 of 11



Testing Tools and Frameworks

We leverage industry-standard tools and frameworks for efficient and reliable
testing:

Jest: A JavaScript testing framework for unit and integration tests.
Supertest: A library for testing HTTP servers, used for integration tests.
Artillery: A load testing tool used for performance validation.
Static Analysis Tools: Employed to identify potential security flaws in the
code.
Penetration Testing: Simulated attacks to discover vulnerabilities.

Quality Assurance Metrics

We track specific metrics to ensure high-quality plugin delivery:

Code Coverage: We aim for high code coverage to ensure most of the codebase
is tested.
Bug Reporting Rate: We monitor the number of bugs reported during testing
to assess the plugin's stability.
Security Audit Results: Successful completion of security audits validates the
plugin's security posture.

Security Considerations

Security is a paramount concern in the development of the Hapi.js plugin. We will
implement several measures to mitigate potential risks such as cross-site scripting
(XSS), unauthorized access, and data breaches. Our approach includes proactive
vulnerability assessments throughout the development lifecycle.

Data Protection

Sensitive data will be handled with utmost care. We will employ encryption both at
rest and in transit to protect confidentiality. Role-based access control will be
implemented to ensure that only authorized users can access specific features and
data. API keys and credentials will be securely stored using industry best practices.

Page 8 of 11



Compliance

We will consider relevant compliance standards during the development process.
This includes GDPR compliance and potentially HIPAA, depending on the types of
documents the plugin will handle. Our security measures will align with these
standards to ensure data privacy and protection.

Deployment and Maintenance

The Hapi.js plugin will be deployed across three environments: development,
staging, and production. Each environment will have configurations tailored to its
specific needs. We will use a continuous integration/continuous deployment (CI/CD)
pipeline to automate the deployment process.

Versioning and Updates

We will use semantic versioning to manage plugin updates and patches. This
ensures clear communication about the nature and impact of each release. Our
update process includes automated testing to minimize disruptions. A dedicated
release management process will oversee all updates.

Rollback Strategy

In case of deployment failures, we have a well-defined rollback strategy. This
strategy includes automated backups and versioned deployments. We will use these
tools to quickly revert to a stable version of the plugin. This minimizes downtime
and ensures business continuity.

Long-Term Maintenance

Our maintenance plan includes ongoing monitoring, bug fixes, and performance
optimization. We will provide support and address any issues that arise. Regular
security audits and updates will also be part of our maintenance plan.

Page 9 of 11



Potential Risks and Mitigation Strategies

Several factors could potentially affect the successful completion of this project.
These include scope creep, resource constraints, and integration challenges with
ACME-1's existing systems. We will actively monitor and control these risks through
regular project status meetings and risk assessment workshops. Proactive issue
tracking will also be implemented to identify and address problems early on.

Risk Identification

Scope creep, or the uncontrolled expansion of project requirements, poses a risk to
the timeline and budget. Resource constraints, such as the unavailability of key
personnel or tools, could also impact progress. Integration challenges, stemming
from unforeseen incompatibilities between the new plugin and ACME-1's current
infrastructure, could lead to delays and rework.

Mitigation Strategies

To mitigate scope creep, we will establish a clear and well-defined project scope at
the outset. Any change requests will be carefully evaluated for their impact on the
timeline and budget. Resource constraints will be addressed through resource
reallocation and, if necessary, adjusted timelines. For integration challenges, we will
conduct thorough testing and maintain open communication with ACME-1's
technical team. Feature prioritization will be utilized if necessary.

Team and Stakeholders

Our team possesses the expertise required for successful Hapi.js plugin
development. This includes Hapi.js framework proficiency, experience with real-
time communication protocols, database management skills, and a strong
understanding of security best practices.

Project Team

The core project team comprises:

John Doe (Lead Developer): Responsible for plugin architecture, development,
and code quality.

Page 10 of 11



Jane Smith (QA Engineer): Responsible for testing, quality assurance, and
identifying potential issues.
Peter Jones (Project Manager): Responsible for project planning, coordination,
and communication.

Communication

We will maintain clear and consistent communication through daily stand-up
meetings, weekly project status reports, and a dedicated Slack channel. This ensures
all stakeholders are informed of progress, challenges, and key decisions.

Conclusion and Next Steps

This proposal outlines DocuPal Demo, LLC's plan to develop a Hapi.js plugin for
ACME-1. The plugin will enable real-time document collaboration within your
existing application. It includes features that enhance user experience and
productivity. Our approach covers design, development, testing, deployment, and
ongoing support. We have considered quality assurance, security, and compliance
throughout the development lifecycle.

Call to Action

To move forward, we request your approval of this proposal. This will allow us to
officially kick off the plugin development.

Upcoming Milestones and Communication

Our initial focus will be on completing the core real-time editing functionality.
Following this, we will implement version control capabilities. We will provide
weekly progress reports. Bi-weekly demo sessions will also be scheduled to
showcase the plugin's evolution.

Page 11 of 11


