
Table of Contents
Introduction 3

Current API State 3
Why Upgrade? 3

Rationale and Objectives 3

Addressing Current Limitations 4
Enhancing Functionality and Security 4
Improving Developer Experience 4

Technical Specifications 4

Schema Modifications 4
New Features 5
Deprecated Elements 5
Backward Compatibility 5

Impact Analysis 6

Existing Integrations 6
Performance 6
Security 6
Developer Workflows and Tools 7

Migration and Rollout Plan 7

Migration Strategy 7
Rollout Phases and Timeline 7

Community Feedback and Collaboration 8

Stakeholder Involvement 8
Ongoing Dialogue 8

Risk Assessment and Mitigation 8

Technical Risks 9
Operational Risks 9
Monitoring and Support 9
Rollback Plan 9

Roadmap and Future Enhancements 9

Subsequent Upgrades 10
Emerging Standards and Technologies 10
Longer-Term Plans 10

References and Appendices 10

Page 1 of 11



Documentation 10
Examples and Samples 11
External Standards and Best Practices 11

Page 2 of 11



Introduction

This document proposes an update and upgrade to our existing GraphQL API.
Docupal Demo, LLC is initiating this project to modernize our API infrastructure.
Our goal is to deliver significant improvements in performance and developer
experience.

Current API State

The current GraphQL API is operational. However, it's starting to show limitations.
We've identified performance bottlenecks that impact efficiency. The API also uses
some outdated patterns that make development more complex than it needs to be.

Why Upgrade?

An upgrade is essential for several reasons. We need to resolve the current
performance issues. An upgrade will let us incorporate new features, enhancing the
API's capabilities. It will also help us align with current GraphQL best practices. This
alignment will streamline development and improve maintainability.

This proposal outlines our recommended approach to modernizing the GraphQL
API. It details the steps involved, the expected benefits, and the resources required.
The proposal also addresses potential challenges and mitigation strategies. Our goal
is to provide a clear path toward a more efficient, robust, and developer-friendly
GraphQL API.

Rationale and Objectives

This proposal addresses several limitations with our current GraphQL
implementation. We are experiencing performance bottlenecks, especially with
complex queries. Our real-time capabilities are also limited, hindering features that
require immediate data updates. Furthermore, we lack support for some of the
newer GraphQL features, putting us behind current best practices.

Page 3 of 11



Addressing Current Limitations

The existing system struggles to efficiently handle intricate data requests. This
results in slower response times and a less-than-ideal user experience. The update
will improve query execution, reducing latency and improving overall system
responsiveness.

Enhancing Functionality and Security

The upgrade also aims to enhance our real-time functionality. This improvement
will enable new features and provide users with more immediate data updates. We
will be able to build more responsive applications. Moreover, the update includes
security enhancements, protecting our data and infrastructure from potential
threats.

Improving Developer Experience

Finally, this proposal aims to streamline the developer experience. By adopting
newer GraphQL features, we can simplify development workflows and improve code
maintainability. This will enable our team to build and deploy applications more
efficiently, reducing development time and costs. There are no regulatory or
compliance requirements directly influencing this proposal.

Technical Specifications

This section outlines the technical specifications for the proposed GraphQL update.
It details the schema modifications, new features, handling of deprecated elements,
and backward compatibility measures.

Schema Modifications

The update introduces schema modifications to enhance data filtering, sorting, and
representation. New fields will be added to existing types, improving the granularity
of data retrieval. These additions provide more precise control over query results.
Modifications to existing types are also planned to better reflect the underlying data
structure. These changes aim to improve the overall clarity and maintainability of
the schema.

Page 4 of 11



New Features

This update introduces new types, queries, and mutations. These additions expand
the capabilities of the GraphQL API.

New Types: New types are introduced to improve data modeling capabilities.
They allow for more complex and nuanced data structures.
New Queries: New queries provide advanced search capabilities. These allow
clients to perform more complex data retrieval operations.
New Mutations: New mutations streamline data manipulation. These simplify
common data modification tasks.
New Subscriptions: New subscriptions allow real time data updates with the
server.

Deprecated Elements

Deprecated fields will be removed in this update cycle.

Removal Process: Deprecated fields will be removed following a grace period.
Clients currently using these fields will need to migrate to the new equivalents.
Communication: Clear communication will be provided to clients regarding
the deprecation schedule. This will include migration guides and support
resources.
Compatibility Layer: Some deprecated fields will be maintained with a
compatibility layer. This allows existing clients to continue functioning
without immediate changes. The compatibility layer will eventually be phased
out. Clients should plan to migrate away from deprecated features as soon as
possible.

Backward Compatibility

Backward compatibility is a key consideration in this update. Efforts will be made to
minimize breaking changes.

Versioning: Versioning will be used to manage necessary breaking changes.
This allows clients to opt-in to the new functionality at their own pace.
Compatibility Layers: Compatibility layers will be provided for certain
breaking changes. These layers allow older clients to continue functioning
without modification.

Page 5 of 11



Communication: Clients will be informed of any potential backward
compatibility issues. Migration guides and support will be provided to assist
with the transition.

Impact Analysis

The proposed GraphQL update/upgrade will affect several key areas. These include
existing integrations, system performance, security, and developer workflows. We
have assessed each area to minimize disruption and maximize the benefits of the
upgrade.

Existing Integrations

Existing integrations will likely need adjustments. The new schema may introduce
changes that require updates to client applications and services. To assist with this
transition, Docupal Demo, LLC will provide comprehensive migration guides. These
guides will outline the necessary steps to align integrations with the updated
GraphQL schema. We will also offer support to address any integration challenges.

Performance

We anticipate a positive impact on query performance. Optimizations within the
GraphQL engine and improved caching strategies should lead to faster response
times. The below chart illustrates the expected performance improvements based
on internal benchmarks.

Security

This update includes enhanced security features. It introduces stronger
authentication and authorization mechanisms. Improved input validation will also
help to prevent common security vulnerabilities. These enhancements will provide
a more secure environment for accessing and manipulating data through the
GraphQL API.

Page 6 of 11



Developer Workflows and Tools

Developers will need to adapt to the new schema. This may involve updating queries
and tools. Docupal Demo, LLC will provide updated tooling and thorough
documentation to support developers during this transition. These resources will
include schema documentation, updated client libraries, and example code. These
resources aim to streamline the process of adapting to the new GraphQL version.

Migration and Rollout Plan

This section outlines the plan for migrating clients to the new GraphQL version. It
covers the migration strategy, rollout phases, and timelines.

Migration Strategy

Clients will need to update their queries and integrations to align with the new
GraphQL version. We will provide a comprehensive migration guide to assist with
this process. This guide will detail all breaking changes and provide step-by-step
instructions for updating client code. To ensure a seamless transition, we will offer
dual-version operation for a limited time. This allows clients to migrate at their own
pace while maintaining compatibility.

Rollout Phases and Timeline

The rollout will occur over three months, encompassing development, testing, and
phased deployment.

Phase 1: Development (Month 1)

Internal development and testing of the new GraphQL version.
Creation of the migration guide and supporting documentation.

Phase 2: Testing (Month 2)

Release of a beta version to a select group of clients for testing and feedback.
Address any issues identified during beta testing.
Refine migration guide based on user feedback.

Phase 3: Phased Deployment (Month 3)

Page 7 of 11



Gradual rollout of the new GraphQL version to all clients.
Ongoing monitoring and support to address any issues that arise.
Communication will be handled through release notes, blog posts, email
updates, and dedicated support channels. We are committed to providing clear
and timely information to our users throughout the entire migration process.

Community Feedback and Collaboration

This GraphQL update/upgrade proposal reflects feedback gathered from our user
and developer community. We’ve heard requests for improved performance,
enhanced real-time capabilities, and clearer documentation. This input directly
shaped the priorities and features outlined in this document.

Stakeholder Involvement

The drafting of this proposal involved key stakeholders from across Docupal Demo,
LLC. Representatives from our engineering, product, and support teams contributed
their expertise and perspectives. Their collaborative efforts ensure a comprehensive
and well-rounded approach to the proposed changes.

Ongoing Dialogue

To foster continuous improvement and transparency, we will maintain open forums
and repositories for ongoing discussion. These platforms will allow users and
developers to share feedback, ask questions, and contribute to the evolution of our
GraphQL implementation. We encourage active participation to ensure the
update/upgrade meets the needs of the community.

Risk Assessment and Mitigation

This section outlines potential risks associated with the GraphQL update/upgrade
project and details mitigation strategies to minimize their impact. Docupal Demo,
LLC has identified key areas of concern and developed proactive measures to ensure
a smooth and successful transition.

Page 8 of 11



Technical Risks

Unexpected integration issues may arise during the update. To mitigate this, we will
conduct thorough testing in a staging environment that mirrors the production
environment. This includes rigorous unit and integration tests, as well as user
acceptance testing (UAT).

Operational Risks

Downtime during deployment is a potential operational risk. We will minimize
downtime by employing a blue-green deployment strategy. This involves
maintaining two identical environments, one live (blue) and one for the update
(green). Once the update is complete and verified in the green environment, traffic
will be switched over with minimal interruption.

Monitoring and Support

Comprehensive monitoring and alerting will be implemented to identify and
address unforeseen issues promptly. A dedicated support team will be available to
respond to any incidents or user inquiries during and after the upgrade.

Rollback Plan

A rollback plan is in place to revert to the previous version if critical issues arise
post-deployment. Regular backups of the production environment will be
maintained to facilitate a swift and complete rollback if necessary. This plan will be
tested prior to the actual upgrade to ensure its effectiveness.

Roadmap and Future Enhancements

This GraphQL upgrade proposal is a step toward modernizing our APIs and setting
the stage for upcoming improvements. Our broader API roadmap includes plans to
expand the capabilities of our GraphQL API.

Page 9 of 11



Subsequent Upgrades

We anticipate subsequent upgrades that incorporate new GraphQL features. We will
also focus on further performance optimizations. This includes continuous
monitoring and adjustments based on usage patterns.

Emerging Standards and Technologies

We are actively evaluating emerging standards like GraphQL Subscriptions. We are
also considering Apollo Federation to improve scalability and modularity. These
technologies will allow us to build more complex and efficient APIs. We will
integrate these as they mature and align with our needs.

Longer-Term Plans

In the longer term, we plan to extend our GraphQL API with advanced features.
These include real-time data updates using GraphQL Subscriptions and improved
API composition using Apollo Federation. We will also explore performance
enhancements through query optimization and caching strategies. Our goal is to
provide a flexible and high-performance API that meets the evolving needs of our
users. We will regularly assess new GraphQL specifications and tools to ensure we
leverage the best available technologies. These future enhancements will ensure our
GraphQL API remains modern, scalable, and efficient.

References and Appendices

Documentation

Comprehensive documentation supports this GraphQL update/upgrade proposal. It
includes schema definitions to detail the structure of the GraphQL API. Migration
guides offer step-by-step instructions for transitioning to the new version. Detailed
API references explain each endpoint, its parameters, and expected responses.

Examples and Samples

We provide examples and sample queries. These demonstrate the new features and
capabilities introduced in this update. They help illustrate how to effectively use the
updated GraphQL API.

Page 10 of 11



External Standards and Best Practices

This proposal references GraphQL best practices. We adhere to guidelines from
Apollo and the GraphQL Foundation. These standards ensure a robust and
maintainable GraphQL implementation. This promotes industry-wide compatibility
and interoperability.

Page 11 of 11


