
Table of Contents
Introduction 3

Background 3

Purpose of this Proposal 3

Project Objectives and Stakeholders 3

Schema Architecture Overview 3

Type System and Organization 4

Modularization Strategy 4

Design Principles 4

Queries, Mutations, and Subscriptions Design 4

Queries 5

Mutations 5

Subscriptions 6

Resolvers and Data Sources Integration 6

Data Fetching and Optimization 6

Caching Strategy 6

Validation and Security Considerations 7

Schema Validation 7

Authentication and Authorization 7

Security Risk Mitigation 7

Performance Optimization Strategies 8

Optimization Techniques 8

Performance Monitoring 8

Tooling and Development Workflow 8

Collaboration and Version Control 9

Integration with CI/CD Pipelines 9

Documentation and Developer Experience 9

Schema Documentation 10

Onboarding Materials 10

Project Timeline and Milestones 10

Project Phases 11

Milestones and Deliverables 11

Estimated Timeline 11

Conclusion and Next Steps 12

Page 1 of 12



Post-Approval Actions 12

Feedback and Collaboration 12

Page 2 of 12



Introduction

Background

Acme, Inc. requires a modern, efficient solution for accessing and managing its
critical data. This data is related to both documents and workflows. Docupal Demo,
LLC is pleased to present this proposal. It details the development of a GraphQL
schema tailored to meet ACME-1's specific needs.

Purpose of this Proposal

This document outlines our approach to designing and implementing a GraphQL
schema. The goal is to provide a flexible and powerful API. This API will serve as a
unified data access layer. It will streamline data retrieval and enable rapid
development of new features for ACME-1's document management system.

Project Objectives and Stakeholders

The primary objective of this GraphQL schema is to improve data retrieval
efficiency. It also addresses the need for a unified data access layer. This initiative
involves key stakeholders from both Acme, Inc. and Docupal Demo, LLC.
Stakeholders include the Acme Inc. Development Team, DocuPal Demo, LLC
Development Team, and Acme Inc. Product Owners. Their collaboration will ensure
the schema aligns perfectly with ACME-1's business requirements.

Schema Architecture Overview

The GraphQL schema for ACME-1 is designed with a modular, type-based structure.
This approach ensures a clear separation of concerns and promotes maintainability
and scalability. The schema leverages interfaces and unions where appropriate to
handle polymorphism and represent diverse data structures.

Page 3 of 12



Type System and Organization

The type system is organized into logical modules based on core domain entities.
These modules include Documents, Users, and Workflows. Each module
encapsulates related types, fields, and resolvers, creating self-contained units of
functionality. Interfaces are used to abstract common attributes across different
types. For example, an INode interface can define a standard id field for all objects
within the schema. This promotes consistency and allows for easier querying of
multiple types through a single interface.

Modularization Strategy

Schema modularization is achieved through a combination of type extensions and
schema composition techniques. Each domain module is defined in its own file, and
type extensions are used to add fields or interfaces to existing types. Schema
composition allows combining these modules into a single, unified GraphQL
schema. This approach supports independent development and deployment of
different parts of the schema.

Design Principles

Several key design principles are applied throughout the schema's architecture.
Separation of concerns ensures that each module has a specific responsibility. The
single responsibility principle guides the design of individual types and resolvers,
ensuring they have a single, well-defined purpose. The use of interfaces allows
abstracting common data structures and facilitates code reuse. These principles
promote a clean, maintainable, and extensible schema.

Queries, Mutations, and Subscriptions
Design

This section details the GraphQL schema operations for ACME-1, covering queries
for data retrieval, mutations for data modification, and subscriptions for real-time
updates.

Page 4 of 12



Queries

The schema provides several queries to fetch data efficiently.

getDocument(id: ID): This query retrieves a single document by its unique
identifier. This will allow ACME-1 users to quickly access specific documents
when the ID is known.

getDocuments(filter: DocumentFilter, limit: Int, offset: Int): This query
retrieves a list of documents, with optional filtering, pagination (limit and
offset). The DocumentFilter argument allows ACME-1 to filter documents
based on various criteria (e.g., document type, status, creation date). The limit
and offset arguments enable pagination, so large document sets are handled
efficiently.

getUser(id: ID): This query retrieves a single user by their unique identifier.
This will allow ACME-1 to quickly access specific user's details when the ID is
known.

getWorkflow(id: ID): This query retrieves a specific workflow by its unique
identifier. This allows ACME-1 to track the progress of individual workflows.

Mutations

Mutations enable ACME-1 to modify data within the system.

createDocument(input: CreateDocumentInput): This mutation creates a new
document. The CreateDocumentInput type defines the required data for
creating a document, such as title, content, and author.

updateDocument(id: ID, input: UpdateDocumentInput): This mutation updates
an existing document, specified by its ID. The UpdateDocumentInput type
defines the data that can be updated. It might include fields like title, content,
status, etc.

deleteDocument(id: ID): This mutation deletes a document, specified by its ID.
This will allow ACME-1 to remove obsolete or unwanted documents.

Subscriptions

Subscriptions provide real-time updates to ACME-1.

Page 5 of 12



documentUpdated(id: ID): This subscription notifies clients whenever a
document with the specified ID is updated. This allows ACME-1 to receive real-
time updates on document changes, such as status updates or content
modifications.

workflowUpdated(id: ID): This subscription notifies clients whenever a
workflow with the specified ID is updated. This enables ACME-1 to monitor
workflow progress in real time, receiving notifications when tasks are
completed or deadlines are approaching. This allows immediate insight into
any changes in workflow status.

Resolvers and Data Sources Integration

Our GraphQL implementation will integrate with ACME-1's PostgreSQL database.
This database stores document metadata, user information, and workflow
definitions. Resolvers act as intermediaries. They fetch data from the database and
transform it into the shape defined by the GraphQL schema.

Data Fetching and Optimization

We will use efficient data fetching techniques to optimize resolver performance. One
key technique is DataLoader. DataLoader minimizes database queries by batching
multiple requests for the same data into a single query. Query optimization will
further enhance data retrieval speeds. Connection pooling will be implemented to
reduce the overhead of establishing database connections.

Caching Strategy

Caching is essential for maintaining optimal performance. We plan to implement
caching at the resolver level using Redis. Redis will store frequently accessed data
and query results. This reduces the load on the PostgreSQL database and improves
response times for ACME-1. The caching strategy ensures that the most requested
data is readily available.

Validation and Security Considerations

To ensure the reliability and security of the GraphQL schema, we will implement
several validation and security measures.

Page 6 of 12



Schema Validation

Schema validation is crucial for maintaining the integrity of the GraphQL API. We
will use schema validation tools during both development and deployment. This
process helps to catch errors early, enforce schema standards, and prevent breaking
changes that could disrupt client applications. Regular validation checks ensure that
the schema remains consistent and adheres to best practices.

Authentication and Authorization

We will implement robust authentication and authorization mechanisms.
Authentication will be handled using JWT (JSON Web Tokens). This industry-
standard approach allows us to verify the identity of users accessing the API.

Authorization will be role-based. Different roles will have different levels of access
to data and mutations. This ensures that users can only access the resources they
are permitted to use, reducing the risk of unauthorized data access or modification.

Security Risk Mitigation

We will take several steps to mitigate common security risks. Input validation will
be implemented to prevent malicious data from entering the system. This includes
validating data types, formats, and ranges to ensure they meet expected criteria.

Rate limiting will be used to protect against denial-of-service attacks and prevent
abuse of the API. By limiting the number of requests a user can make within a
certain time period, we can ensure the API remains available to all users.

We will also implement measures to protect against common GraphQL
vulnerabilities, such as query complexity attacks. These attacks involve crafting
complex queries that can overload the server. We will use techniques such as query
cost analysis and depth limiting to prevent these types of attacks.

Performance Optimization Strategies

We will closely monitor key performance indicators to ensure optimal GraphQL
schema performance. These metrics include query execution time, resolver
performance, cache hit rate, and error rates.

Page 7 of 12



Optimization Techniques

To enhance performance, we will employ several optimization techniques:

Query Batching: This technique reduces the number of round trips to the
server by grouping multiple requests into a single batch.
Connection Pooling: Reusing database connections minimizes the overhead
associated with establishing new connections for each query.
Optimized Database Queries: Crafting efficient database queries ensures data
retrieval is as fast as possible.
Efficient Resolvers: Using resolvers that are optimized for performance will
reduce query time.
Minimizing Over-Fetching: We will ensure that clients only request the data
they need. This will reduce the amount of data transferred and processed.
Database explain Feature: We will use the explain feature of the database to
identify areas of improvement in query performance.

Performance Monitoring

We will continuously monitor the performance of the GraphQL schema and its
underlying components. This involves tracking the metrics mentioned above and
identifying any performance bottlenecks. Regular analysis of these metrics will
allow us to proactively address issues and maintain optimal performance.

Tooling and Development Workflow

Our GraphQL schema development utilizes a suite of tools and a streamlined
workflow to ensure efficiency and quality. We employ GraphQL Editor for schema
generation and maintenance. This allows for visual design and reduces manual
coding efforts.

Apollo Server Developer Tools are integral for debugging and performance
monitoring. These tools provide insights into query resolution and help identify
potential bottlenecks.

Schema linting tools are incorporated to enforce coding standards and best
practices. This helps maintain consistency and prevents errors early in the
development lifecycle.

Page 8 of 12



Collaboration and Version Control

We use Git for version control. This enables multiple developers to work on the
schema concurrently. Code reviews are a standard practice to ensure code quality
and knowledge sharing. Communication among developers is facilitated through
platforms like Slack or Microsoft Teams. This ensures quick resolution of issues and
seamless collaboration.

Integration with CI/CD Pipelines

The GraphQL schema is integrated with our CI/CD pipelines. Automated testing is
performed with each commit to the repository. This includes unit tests and
integration tests to validate the schema's functionality. Upon successful testing, the
schema is automatically deployed to the designated environment. This ensures a
smooth and reliable deployment process.

Documentation and Developer
Experience

We understand the importance of clear and comprehensive documentation, along
with a smooth onboarding experience for your development teams at ACME-1.
Docupal Demo, LLC will provide several resources to ensure your team can
effectively utilize the GraphQL schema.

Schema Documentation

The GraphQL schema will be thoroughly documented, leveraging GraphQL's
introspection capabilities. This allows developers to query the schema itself for
information about available types, fields, and their descriptions.

We will also generate user-friendly, visual documentation using tools like GraphQL
Voyager, enabling developers to easily explore the schema's structure and
relationships. In addition, example queries and mutations will be provided to
illustrate common use cases.

To ensure documentation consistency and reusability, we will employ schema
directives and comments. These will provide reusable documentation blocks for
common fields and types, reducing redundancy and improving maintainability. For

Page 9 of 12



instance:

""" Represents a customer's address. """ type Address { """ The street address. """
street: String city: String state: String zipCode: String }

Onboarding Materials

To facilitate a seamless onboarding process, Docupal Demo, LLC will supply the
following materials:

Getting Started Guide: A comprehensive guide covering the basics of the
GraphQL schema, including authentication, querying, and data manipulation.
Example Queries: A collection of pre-built queries demonstrating how to fetch
data for common scenarios.
Sandbox Environment: Access to a dedicated sandbox environment, allowing
developers to experiment with the schema and test queries without affecting
production data. This ensures a safe and efficient learning process.

Project Timeline and Milestones

Docupal Demo, LLC will use a phased approach to deliver the GraphQL schema for
ACME-1. This ensures a structured and transparent development process. We will
use project management tools such as Jira or Asana to track progress and address
potential roadblocks.

Project Phases

The project includes four key phases:

1. Schema Definition: We will define the complete GraphQL schema based on
ACME-1's requirements.

2. Resolver Implementation: We will implement resolvers for all queries and
mutations defined in the schema.

3. Testing and Validation: Rigorous testing will be conducted, including
integration tests, to ensure the schema functions correctly.

4. Deployment and Monitoring: The schema will be deployed to the production
environment and continuously monitored for performance and stability.

Page 10 of 12



Milestones and Deliverables

The key milestones and deliverables for this project are:

Milestone 1: Completion of the defined GraphQL schema document.
Deliverable: A finalized and approved GraphQL schema definition.

Milestone 2: Implementation of all resolvers.
Deliverable: Fully implemented resolvers for all queries and mutations.

Milestone 3: Successful completion of integration testing.
Deliverable: Passing integration test results.

Milestone 4: Deployment to production.
Deliverable: A fully deployed and operational GraphQL schema in the
production environment.

Estimated Timeline

The estimated timeline for each phase is outlined below. These dates are estimates
and may be adjusted based on ACME-1's feedback and project complexities.

Phase Start Date End Date

Schema Definition 2025-08-19 2025-08-26

Resolver Implementation 2025-08-27 2025-09-09

Testing and Validation 2025-09-10 2025-09-16

Deployment and Monitoring 2025-09-17 2025-09-23

Page 11 of 12



Conclusion and Next Steps

The proposed GraphQL schema offers ACME-1 a robust foundation for managing
document and workflow data. It allows flexible, efficient, and secure access to this
critical information.

Post-Approval Actions

Upon approval, the ACME-1 Development Team should prioritize schema
implementation and integration.

Feedback and Collaboration

Stakeholders can provide input through scheduled meetings, code reviews, and a
dedicated feedback channel. This collaborative approach ensures the schema aligns
with ACME-1's specific needs.

Page 12 of 12


