
Table of Contents
Introduction 3

The Importance of Elasticsearch Performance 3

Why Performance Optimization Matters 3

Current System Assessment 3

Existing Infrastructure 4

Performance Bottlenecks 4

Baseline Metrics 4

Optimization Strategies 5

Indexing Optimization 5

Query Optimization 5

Cluster Configuration for Scalability 6

Resource Allocation and Hardware Usage 6

Query Performance Tuning 7

Identifying Inefficient Query Patterns 7

Caching and Filtering Strategies 7

Query Profiling and Debugging Tools 8

Indexing and Data Ingestion Optimization 8

Index Mapping Optimization 8

Optimizing Batch Sizes and Refresh Intervals 9

Handling Large Data Volumes 9

Cluster Management and Scalability 10

Monitoring Cluster Health 10

Scaling Strategies 10

Shard and Replica Configuration 11

Monitoring and Benchmarking 11

Key Performance Indicators (KPIs) 11

Benchmarking Strategy 11

Regular Performance Reviews 12

Risk Assessment and Mitigation 12

Potential Risks 12

Mitigation Strategies 13

Rollback Procedures 13

Data Integrity 13

Page 1 of 16



Implementation Plan 13

Phase 1: Analysis and Baseline (Weeks 1-2) 13

Phase 2: Optimization Implementation (Weeks 3-6) 14

Phase 3: Testing and Validation (Week 7) 14

Phase 4: Monitoring and Ongoing Support (Week 8 onwards) 15

Conclusion and Recommendations 15

Key Benefits 15

Next Steps 15

Future Improvements 16

About Us 16

Our Expertise 16

Our Commitment 16

Page 2 of 16



Introduction

Acme, Inc (ACME-1) relies on efficient data management and analytics to maintain
its competitive edge. Docupal Demo, LLC understands this need and is pleased to
present this proposal for optimizing your Elasticsearch deployment. Elasticsearch is
a distributed, RESTful search and analytics engine at the heart of the Elastic Stack. It
allows you to store data centrally, enabling lightning-fast search, fine-tuned
relevancy, and powerful analytics that scale with ease.

The Importance of Elasticsearch Performance

Elasticsearch is used in various critical applications, including application search,
website search, enterprise search, logging and log analytics, infrastructure
monitoring, application performance monitoring, security analytics, and business
analytics. Given these diverse and vital applications, optimal performance is
paramount.

Why Performance Optimization Matters

Performance optimization is critical because it directly impacts search speeds,
resource utilization, and the system's ability to manage growing data volumes and
user traffic. Well-optimized Elasticsearch deployments ensure a better user
experience and reduced operational costs. Common challenges include slow query
response times, indexing bottlenecks, high CPU or memory usage, cluster
instability, and uneven shard distribution. This proposal addresses these potential
issues.

Current System Assessment

ACME-1's current Elasticsearch system is facing several performance challenges.
Our assessment reveals key areas needing optimization.

Page 3 of 16



Existing Infrastructure

ACME-1's Elasticsearch cluster consists of 15 data nodes. Each node has 64GB of
RAM and 16 CPU cores. The cluster stores approximately 5TB of data across multiple
indices. The data consists primarily of application logs and user activity events. The
cluster is running Elasticsearch version 7.9.

Performance Bottlenecks

We've identified several performance bottlenecks. These impact query latency and
overall system stability.

High Query Latency: Certain queries, especially those involving aggregations
across large datasets, experience high latency. Average query latency is around
1.5 seconds, with some queries exceeding 5 seconds.
CPU Utilization: Data nodes frequently experience high CPU utilization, often
exceeding 80% during peak periods. This indicates CPU-bound operations are
a limiting factor.
Memory Pressure: The cluster is experiencing memory pressure, leading to
increased garbage collection activity. This impacts performance.
Suboptimal Indexing Strategy: The current indexing strategy isn't optimized
for the types of queries ACME-1 commonly runs. This results in slower search
speeds.
Lack of Monitoring: Insufficient monitoring and alerting makes it difficult to
proactively identify and address performance issues.

Baseline Metrics

We've established baseline metrics to measure the impact of our optimization
efforts. These metrics include:

Average Query Latency: 1.5 seconds
CPU Utilization (Peak): 80%
Memory Utilization (Peak): 90%
Indexing Rate: 50,000 documents per second
Search Throughput: 1,000 queries per second

The chart shows the average query latency trend over the past six months. It shows
latency has been relatively stable, but optimization is still needed to meet ACME-1's
goals.

Page 4 of 16



Optimization Strategies

To enhance the performance of ACME-1's Elasticsearch cluster, Docupal Demo, LLC,
proposes the following optimization strategies. These strategies cover indexing,
query optimization, and cluster configuration. We will also address resource
allocation and hardware usage.

Indexing Optimization

Effective indexing is critical for search speed. We recommend the following:

Appropriate Data Types: Choosing the right data type for each field is crucial.
For example, use keyword for fields that don't require analysis and text for
fields that need full-text search. Numeric data should use numeric types (e.g.,
integer, long, float).

Optimized Mappings: We will review and refine the index mappings. This
includes settings like index, analyzer, and fielddata. We will disable fielddata
on text fields unless absolutely necessary, as it consumes significant memory.

Routing: If applicable, we will implement routing to direct related documents
to the same shard. This can improve query performance by limiting the
number of shards searched.

Data Pre-processing: Before indexing, we can pre-process data to improve
search efficiency. This might involve removing irrelevant characters,
standardizing formats, or enriching data with additional information.

Query Optimization

Optimizing queries reduces latency and improves the user experience. We suggest
these techniques:

Filters Instead of Queries: Use filters for non-scoring queries. Filters are
cached and generally faster than queries. Use queries only when relevance
scoring is required.

Avoid Wildcard Queries: Wildcard queries (e.g., prefix, wildcard, regexp) can be
resource-intensive. We will explore alternatives like term queries or n-grams
where appropriate.

Page 5 of 16



Term Queries for Exact Matches: For exact matches, term queries are more
efficient than match queries with keyword analyzers.

Optimize Query Structure: We will analyze and optimize the structure of
complex queries. This includes using boolean queries effectively and avoiding
unnecessary clauses.

Cluster Configuration for Scalability

Proper cluster configuration is essential for handling increasing data volumes and
user traffic. We propose:

Increase Number of Nodes: Scaling the cluster horizontally by adding more
nodes increases its capacity and resilience.

Shard Allocation Settings: We will adjust shard allocation settings to
distribute shards evenly across nodes. This includes setting
cluster.routing.allocation.balance.shard and
cluster.routing.allocation.balance.index to optimize shard distribution.

Heap Size Configuration: We will configure the JVM heap size appropriately
based on the available memory and the cluster's workload. As a general rule,
set the JVM heap size to no more than 50% of available RAM, up to a maximum
of 32GB.

Resource Allocation and Hardware Usage

Efficient resource allocation is crucial for optimal performance and cost-
effectiveness. We will focus on:

Resource Utilization Monitoring: We will implement monitoring to track CPU
usage, memory consumption, disk I/O, and network traffic.

Sufficient Memory and CPU: Ensure each node has sufficient memory and
CPU resources to handle its workload. The exact requirements will vary
depending on the data volume, query complexity, and user traffic.

SSDs for Storage: Using SSDs (Solid State Drives) for storage significantly
improves indexing and search performance compared to traditional spinning
disks.

Page 6 of 16



JVM Heap Size: We will fine-tune the JVM heap size based on the monitoring
data and the cluster's workload. Avoid setting the heap size too high, as it can
lead to longer garbage collection pauses.

Query Performance Tuning

Optimizing query performance is crucial for maintaining a responsive Elasticsearch
cluster. We will focus on identifying and mitigating common inefficient query
patterns, leveraging caching and filtering strategies, and utilizing tools for profiling
and debugging queries.

Identifying Inefficient Query Patterns

Certain query structures can significantly degrade performance. These include:

Leading Wildcard Queries: Avoid using wildcards at the beginning of a search
term (e.g., *term). These queries force Elasticsearch to scan the entire index.
Regular Expressions: While powerful, regular expressions (regex) are
computationally expensive. Use them sparingly and optimize them when
necessary.
Unfiltered Cross-Index Queries: Querying multiple indices without proper
filters can lead to unnecessary data retrieval. Always apply filters to narrow
down the search scope.

Caching and Filtering Strategies

Effective use of caching and filtering can dramatically improve query speed.

Request Caching: Enable request caching to store the results of frequently
executed queries. This avoids re-executing the query for identical requests.
Shard Request Caching: Utilize shard request caching to cache the results of
individual shard queries. This is particularly beneficial for distributed queries.
Filtering: Employ filters to reduce the number of documents that need to be
processed by the query. Use term filters, range filters, and geo filters to narrow
down the search results before applying more complex queries.

Query Profiling and Debugging Tools

Several tools are available to help profile and debug Elasticsearch queries.

Page 7 of 16



Profile API: Elasticsearch's Profile API provides detailed information about the
execution of a query, including the time spent in each phase. This allows you to
identify performance bottlenecks.
Slow Query Log: Configure Elasticsearch to log slow queries. This helps you
identify queries that are taking longer than expected and need optimization.
Kibana: Kibana offers visualization and analysis tools that can be used to
monitor query performance and identify slow queries.
Grafana: Grafana can be integrated with Elasticsearch to provide advanced
monitoring and alerting capabilities for query performance. By monitoring key
metrics, we can proactively identify and address performance issues.

Indexing and Data Ingestion
Optimization

Efficient data indexing and ingestion are critical for ACME-1's Elasticsearch
performance. We will focus on optimizing index mappings, batch sizes, refresh
intervals, and strategies for handling large data volumes.

Index Mapping Optimization

Careful design of index mappings significantly impacts search and indexing speed.
We will review ACME-1's current mappings and suggest improvements, including:

Data Type Selection: Choosing the most appropriate data types for each field.
For example, using keyword instead of text for fields that don't require full-text
search.
doc_values Enablement: Ensuring doc_values are enabled for fields used in
sorting and aggregations. This data structure speeds up these operations.
_all Field Disablement: Disabling the _all field if it's not needed. The _all field
concatenates all fields into one large searchable field, which can consume
significant resources.

Optimizing Batch Sizes and Refresh Intervals

Optimizing the size of bulk requests and adjusting the refresh interval can
dramatically improve ingestion throughput.

Page 8 of 16



Bulk API: We will leverage the Bulk API to send multiple indexing operations
in a single request. This reduces network overhead and improves indexing
speed. The optimal bulk request size depends on ACME-1's hardware and data
characteristics. We will conduct tests to determine the ideal size.
Refresh Interval: The refresh interval controls how often Elasticsearch makes
new data searchable. For write-heavy operations, increasing the refresh
interval can improve indexing performance. However, this comes at the cost of
search latency. We will find a balance that meets ACME-1's needs.

Handling Large Data Volumes

To handle large data volumes efficiently, we will implement the following strategies:

Bulk API: As mentioned above, the Bulk API is crucial for high-volume
ingestion.
Indexing Threads: Increasing the number of indexing threads can improve
indexing concurrency. We will adjust the index.number_of_threads setting
based on ACME-1's hardware resources.
Refresh Interval Optimization: As described previously, adjusting the refresh
interval is vital when handling large data volumes.
Data Streams: Consider using data streams to automatically manage rolling
indices, which can simplify the management of time-based data.
Monitoring and Tuning: We will continuously monitor indexing performance
and make adjustments as needed. This includes monitoring CPU usage,
memory usage, and disk I/O.

Cluster Management and Scalability

Effective cluster management is crucial for maintaining optimal Elasticsearch
performance and preventing disruptions. We will work with ACME-1 to establish
robust strategies for monitoring, scaling, and configuring your Elasticsearch cluster.

Monitoring Cluster Health

We will implement comprehensive monitoring of your Elasticsearch cluster using
the Cluster Health API. This includes tracking key metrics such as:

Node resources: CPU utilization, memory usage, and disk I/O.

Page 9 of 16



Cluster status: Identifying red, yellow, or green status to quickly detect
potential issues.
Search and indexing performance: Monitoring query latency and indexing
throughput.

We will configure alerts for critical events, such as node failures or resource
exhaustion. This proactive approach will enable timely intervention and minimize
downtime.

Scaling Strategies

To accommodate ACME-1's evolving data volume and query demands, we
recommend a combined approach of vertical and horizontal scaling.

Vertical Scaling: Upgrading individual nodes with more powerful hardware
(CPU, memory, storage). This approach is suitable for handling increased load
on existing data.
Horizontal Scaling: Adding more nodes to the cluster. This distributes the load
across multiple machines, enhancing both performance and fault tolerance.

The optimal scaling strategy will depend on the specific bottlenecks identified
during performance analysis. We will continuously monitor resource utilization to
determine when and how to scale the cluster effectively.

Shard and Replica Configuration

Proper configuration of shards and replicas is essential for balancing performance
and data redundancy. We will consider the following factors when determining the
optimal shard and replica counts for ACME-1:

Data Volume: The total size of the data to be stored in Elasticsearch.
Query Load: The frequency and complexity of search queries.
Hardware Resources: The available CPU, memory, and storage capacity of the
cluster nodes.

Elasticsearch's shard allocation awareness will be leveraged to distribute shards
evenly across the nodes. This ensures that no single node becomes a bottleneck.

Page 10 of 16



Monitoring and Benchmarking

Effective monitoring and benchmarking are critical for maintaining optimal
Elasticsearch performance at ACME-1. We will establish a comprehensive system to
track key metrics and identify potential bottlenecks.

Key Performance Indicators (KPIs)

We will closely monitor the following KPIs:

Query Response Times: Measures the time it takes for Elasticsearch to return
search results.

Indexing Throughput: Tracks the rate at which data is indexed into
Elasticsearch.

Resource Utilization: Monitors CPU usage, memory consumption, disk I/O,
and network traffic.

Benchmarking Strategy

To validate the success of our optimization efforts, we will conduct benchmark tests
under varying load conditions. These tests will simulate real-world scenarios and
help us assess the impact of our changes on query response times, indexing
throughput, and resource utilization.

Regular Performance Reviews

We recommend reviewing performance metrics regularly to identify trends and
potential issues proactively. Ideally, these reviews should occur on a weekly or
monthly basis. This allows for timely adjustments and prevents minor issues from
escalating into major performance problems.

Page 11 of 16



Risk Assessment and Mitigation

Our Elasticsearch performance optimization proposal for ACME-1 identifies
potential risks. We also outline mitigation strategies to ensure a smooth and
successful project.

Potential Risks

Configuration changes carry inherent risks. These include potential data loss or
corruption. Cluster instability may also occur. Improperly tested changes can lead to
performance degradation. These risks are all taken into account in our mitigation
plan.

Mitigation Strategies

We will back up all data before making any changes. This will safeguard against
data loss. We will use a staging environment to test all configuration changes. This
allows us to identify and correct problems before they impact the production
cluster. We will closely monitor the cluster after deploying any changes. This will
help us quickly identify and address any performance issues.

Page 12 of 16



Rollback Procedures

We will maintain a backup of the original Elasticsearch configuration. This enables
a quick return to a stable state. We will document a clear, step-by-step rollback plan.
This will ensure efficient and effective reversal of changes if needed. We will
thoroughly test the rollback process in the staging environment. This will validate
its effectiveness.

Data Integrity

We will use proven methods to guarantee data integrity. Testing in a staging
environment mirrors the production setting. Rigorous monitoring after deployment
helps in early detection of anomalies. We will implement checksums and data
validation techniques where appropriate. These steps are important to ensure the
quality of your data.

Implementation Plan

The Elasticsearch performance optimization will be implemented in a phased
approach to minimize disruption and allow for careful monitoring of changes.
Docupal Demo, LLC will work closely with ACME-1 stakeholders throughout the
implementation process, communicating planned changes, expected benefits, and
potential risks. We will also gather feedback to ensure alignment with ACME-1's
needs.

Phase 1: Analysis and Baseline (Weeks 1-2)

Goal: Establish a performance baseline and identify key areas for optimization.
Activities:

Review existing Elasticsearch configuration and architecture.
Analyze current resource utilization (CPU, memory, disk I/O).
Identify slow queries and indexing bottlenecks using monitoring and
profiling tools.
Document the current state of the Elasticsearch cluster.

Responsible Party: Docupal Demo, LLC Elasticsearch Team

Page 13 of 16



Phase 2: Optimization Implementation (Weeks 3-6)

Goal: Implement targeted optimizations based on the analysis in Phase 1.
Activities:

Index Optimization: Analyze and adjust index settings, including shard
allocation, refresh intervals, and data types.
Query Optimization: Rewrite slow queries, optimize search requests, and
implement caching strategies.
Configuration Tuning: Adjust Elasticsearch configuration parameters,
such as JVM heap size, thread pool settings, and circuit breaker limits.
Hardware Recommendations: Provide recommendations for hardware
upgrades or changes, if necessary.

Prioritization Criteria: Optimizations will be prioritized based on their
potential impact on performance, ease of implementation, and associated
risks.
Coordination: We will communicate all planned changes with ACME-1 and
gather feedback before implementation.
Responsible Party: Docupal Demo, LLC Elasticsearch Team in collaboration
with ACME-1 IT Department

Phase 3: Testing and Validation (Week 7)

Goal: Validate the effectiveness of the implemented optimizations.
Activities:

Conduct performance testing to measure the impact of the changes.
Compare performance metrics against the baseline established in Phase
1.
Identify any remaining performance bottlenecks.
Work with ACME-1 to validate the performance improvements meet their
requirements.

Responsible Party: Docupal Demo, LLC and ACME-1 Testing Team

Phase 4: Monitoring and Ongoing Support (Week 8 onwards)

Goal: Ensure continued optimal performance and provide ongoing support.
Activities:

Implement continuous monitoring of Elasticsearch performance.
Provide ongoing support and troubleshooting for any performance
issues.
Periodically review and adjust Elasticsearch configuration as needed.

Page 14 of 16



Resources and Tools: We will leverage Elasticsearch documentation,
monitoring tools, profiling tools, and our dedicated team with Elasticsearch
expertise.
Responsible Party: Docupal Demo, LLC Support Team and ACME-1 IT
Department

Conclusion and Recommendations

This proposal outlines a comprehensive approach to optimize your Elasticsearch
cluster. We believe that implementing these recommendations will significantly
improve query performance, indexing speed, and overall system stability for ACME-
1.

Key Benefits

By adopting these strategies, ACME-1 can anticipate:

Reduced query response times, leading to faster data access.
Increased indexing throughput, enabling quicker data ingestion.
Improved resource utilization, lowering operational costs.
Enhanced system stability, minimizing downtime.

Next Steps

We recommend scheduling a follow-up meeting to discuss the implementation plan
and address any remaining questions. This will allow us to finalize the project
timeline and resource allocation.

Future Improvements

We also suggest exploring new Elasticsearch features and automating optimization
tasks in the future. Continuous monitoring and tuning of the cluster will be
essential for maintaining optimal performance over time. Tracking key
performance indicators (KPIs) such as query response time, indexing throughput,
and resource utilization will allow ACME-1 to measure long-term success.

Page 15 of 16



About Us

Docupal Demo, LLC is a United States based company located at 23 Main St,
Anytown, CA 90210. Our core competency lies in enhancing search capabilities for
businesses like ACME-1.

Our Expertise

We specialize in Elasticsearch solutions. This includes cluster design, performance
optimization, and custom development. Our team helps businesses unlock the full
potential of their data through efficient and scalable search implementations. We
are adept at tuning Elasticsearch to meet specific business needs.

Our Commitment

Docupal Demo, LLC is committed to delivering solutions. We aim to improve search
functionality and overall system performance for our clients.

Page 16 of 16


