[5) DOCUPAL

Docupal Demo, LLC

Table of Contents

Introduction and Objective -------------oroommmemr o 2
INETOAUCEION -+ 2
ODJOCEIVE oo 2

Current Redis Deployment Analysis -------------ormommmmmmmmmom oo 2

Performance Bottlenecks oo 3
Data Sets and Workloads -------------rrmrmmmmmmmmm oo 3
Optimization Strategies and Best Practices -~~~ 3
Tuning Parameters ------------oooooooomer 4
Memory Mana@ement - 4
Caching Strategies -~ 5
Data Eviction POLICI@S ----orrrrmmmmmmnms oo 5
Benchmarking and Performance Testing - 5
Tools and Methodology ----------------rrmmmmmrmmeno oo 6
Simulated SCENAIIOS -~~~ ---rorr e 6
Performance COMPAriSON -« -mrrmrmmrromm oo 6
Scaling and High Availability Solutions -~ 6
Horizontal Scaling (Sharding) - 7
Replication and Failover -----------ooommmmemmm oo 7
Consistency vs. Availability -« 8
Monitoring and Maintenance Recommendations ---------------ooooommome e 8
Continuous MONItOFING ------------ssrrr oo 8
Routine MaintenanCe ------------------mmmmmmsmmso s 9
Cost-Benefit Analysis - 9
Resource and Operational COSts ---------------mm-oommmmm oo 9
Performance Gains and Business Value -~ 10
5 0] [T 0] 10
Conclusion and Next Steps - 10
Immediate ACEIONS -----nmmmmmmrrmmrrnno oo 10
Me@SUIING SUCCESS - oo oo ooooooooo oo 10
N]] 1

Page 1 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Introduction and Objective

Introduction

Docupal Demo, LLC presents this Redis Optimization Proposal to Acme, Inc. This
document outlines our assessment and recommendations for enhancing your
current Redis implementation. Redis is a versatile in-memory data structure store. It
functions as a database, cache, message broker, and streaming engine. Its core
strengths lie in key-value storage, diverse data structure support, publish/subscribe
capabilities, transaction processing, and scripting.

Objective

The primary objective of this optimization effort is to elevate the performance of
your Redis infrastructure. We aim to achieve this by reducing latency and
optimizing resource utilization. Ultimately, our goal is to enhance the scalability and
reliability of your systems that rely on Redis. This proposal is tailored for Acme,
Inc's technical team. This includes developers, system administrators, database
administrators, and IT managers. Our recommendations are designed to be
practical and actionable. We will provide clear steps for implementation and
measurable metrics to track progress.

Current Redis Deployment Analysis

ACME-1 currently operates a single Redis instance utilizing default configurations.
This setup lacks replication and relies on standard memory allocation strategies.
The architecture includes no specific customizations for data handling or
performance optimization.

Performance Bottlenecks

Our analysis reveals several performance challenges:

« High Latency: During peak load, the Redis instance experiences increased
latency.

Page 2 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

« Inefficient Memory Usage: Current memory allocation is not optimized for
the data being stored, leading to potential waste.

 Suboptimal Query Performance: The absence of indexing contributes to
slower query execution times.

The above chart illustrates the latency trends observed throughout a typical day.
Notice the spike around 12:00, indicating peak load times.

This chart shows the throughput trends, highlighting periods of reduced
performance.

Data Sets and Workloads

We've identified the primary data sets and workloads impacting Redis performance:

 User Session Data: Storage and retrieval of user session information.

 Product Catalog Information: Read-heavy operations involving product
lookups.

» Real-Time Inventory Levels: Frequent updates to inventory counts.

The workload is a mix of read-heavy operations (product catalog lookups) and
write-heavy operations (session updates and inventory adjustments). The existing
single-instance setup struggles to efficiently handle this mixed workload, especially
during peak times.

Optimization Strategies and Best
Practices

To maximize the efficiency of ACME-1's Redis deployment, we recommend
implementing the following optimization strategies and best practices. These
adjustments will focus on tuning key parameters, refining memory management,
optimizing caching, and strategically managing data eviction.

Tuning Parameters

Adjusting certain Redis configuration parameters can significantly improve
performance. We advise modifying the following:

Page 3 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

« maxmemory: This parameter sets the limit on Redis memory usage. It's
crucial to configure this based on available system memory and the size of the
dataset.

« maxmemory-policy: This dictates how Redis handles memory when the
maxmemory limit is reached. We suggest using volatile-1ru or allkeys-lru.
volatile-lru evicts less recently used keys with an expiration time set. allkeys-
Iru evicts less recently used keys regardless of whether they have an
expiration.

« tcp-keepalive: This parameter configures TCP keep-alive probes to detect dead
peers. Setting an appropriate value ensures timely detection of connection
issues.

 hash-max-ziplist-entries: This setting determines the threshold for using
ziplists to store small hashes. Adjusting this can reduce memory usage for
small hash data structures.

Memory Management

Effective memory management is critical for Redis performance. To optimize
memory usage, consider the following:

« maxmemory-policy Configuration: As mentioned above, selecting the right
maxmemory-policy is essential. volatile-lru is suitable when you want to
prioritize keys with expiration times, while allkeys-Iru is a more general-
purpose eviction policy.

« Transparent Huge Pages (THP): Enabling THP can improve memory
allocation performance. However, it can also lead to increased memory
fragmentation. Thorough testing is recommended before enabling THP in a
production environment.

« Memory Fragmentation Monitoring: Regularly monitor memory
fragmentation using the INFO memory command. Excessive fragmentation
can impact performance. If fragmentation is high, consider restarting Redis or
using online defragmentation tools.

Caching Strategies

Employing effective caching strategies can substantially improve application
performance. We suggest the following:

Page 4 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[©) DOCUPAL

Docupal Demo, LLC

» Write-Through or Write-Back Caching: Use Redis as a write-through or write-
back cache for frequently accessed data. In write-through caching, data is
written to both Redis and the primary database simultaneously. In write-back
caching, data is written to Redis first, and then asynchronously written to the
primary database.

« Client-Side Caching: Implement client-side caching where appropriate. This
reduces latency by storing frequently accessed data directly on the client.

« Optimal Data Structures: Utilize different Redis data structures for optimal
performance. For example, use sets for fast membership checks and sorted
sets for leaderboard implementations.

Data Eviction Policies

Optimizing data eviction policies ensures that Redis efficiently manages memory
when it reaches its capacity. Key considerations include:

« maxmemory-policy Selection: Carefully select the appropriate maxmemory-
policy based on your application's needs. As discussed earlier, volatile-Iru and
allkeys-lru are common choices.

o TTL Management: Set appropriate Time-To-Live (TTL) values for keys. This
ensures that stale data is automatically evicted, freeing up memory.

« Monitoring Eviction Rates: Monitor the number of evicted keys using the
INFO stats command. High eviction rates may indicate that the maxmemory
limit is too low or that the eviction policy is not optimal.

Benchmarking and Performance Testing

We conducted thorough benchmarking and performance testing to evaluate the
impact of our Redis optimization strategies for ACME-1. This process involved
establishing a baseline performance profile, implementing optimizations, and then
re-evaluating performance to quantify improvements. We used a combination of
industry-standard tools and custom scripts to simulate real-world workloads.

Tools and Methodology

Our benchmarking toolkit included redis-benchmark, memtier benchmark, and
custom monitoring scripts. These scripts leveraged redis-cli and the Redis INFO
command to gather detailed performance metrics. We designed test scenarios to
mimic ACME-1's anticipated usage patterns.

Page 5 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Simulated Scenarios

We simulated peak load conditions to determine how Redis performs under stress.
Different read/write ratios were tested to represent various application workloads.
We also evaluated different data eviction policies to find the most efficient strategy
for ACME-L. Failover testing was performed to ensure high availability and
resilience.

Performance Comparison

Metric Pre-Optimization | Post-Optimization | Improvement
Average Latency |5 ms 1ms 80%
Throughput 10,000 ops/sec 30,000 ops/sec 200%

The results clearly demonstrate a significant improvement in Redis performance
following optimization. Average latency decreased from 5ms to 1ms. Throughput
increased dramatically, from 10,000 operations per second to 30,000 operations per
second. These improvements translate to a much faster and more responsive
experience for ACME-1's users.

Scaling and High Availability Solutions

To handle increasing data volumes and user traffic, ACME-1 requires robust scaling
and high availability solutions for its Redis deployment. We propose a multi-faceted
approach that includes horizontal scaling via sharding and replication with
automated failover.

Horizontal Scaling (Sharding)

We recommend horizontal scaling to distribute data across multiple Redis nodes.
This will improve performance and increase overall capacity. Several options are
available:

» Redis Cluster: This provides automatic data sharding across multiple Redis
nodes. It is the recommended solution for most use cases as it handles data
distribution, failover, and cluster management automatically.

Page 6 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

« Client-Side Sharding: This involves implementing the sharding logic within
the application code. While offering more control, it increases application
complexity.

 Proxy Solutions (e.g., Twemproxy): These act as intermediaries, routing
requests to the appropriate Redis node. They can simplify sharding but may
introduce a single point of failure.

We recommend implementing Redis Cluster for ACME-1 due to its ease of
management and built-in high availability features.

Node 1 33%

Node 2 33%

This pie chart illustrates a basic three-node cluster distribution.
Replication and Failover

To ensure high availability, we propose configuring Redis replication with Sentinel
for automatic failover.

» Master-Slave Replication: Data is asynchronously replicated from a master
node to one or more slave nodes. If the master fails, a slave can be promoted to
become the new master.

» Redis Sentinel: This provides automatic failover capabilities. Sentinel
monitors the master and slave nodes, and if the master becomes unavailable, it
automatically promotes a slave to master and reconfigures the other slaves to

Page 7 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

replicate from the new master.

Consistency vs. Availability

In a distributed system, there is a trade-off between consistency and availability. We
recommend prioritizing availability for ACME-1. In the event of network partitions,
the system will continue to operate, potentially serving stale data. Strong
consistency can be implemented, but this may result in temporary unavailability
during failover. The specific choice will depend on ACME-1's specific application
requirements and tolerance for stale data.

Monitoring and Maintenance
Recommendations

To ensure the continued optimal performance of your Redis deployment, we
recommend implementing robust monitoring and maintenance practices.

Continuous Monitoring

We advise utilizing tools like RedisInsight, Prometheus with Grafana, and
CloudWatch to provide comprehensive visibility into your Redis environment. These
tools will enable you to track key performance indicators (KPIs) and identify
potential issues proactively. Critical metrics to monitor include:

o CPU usage
Memory usage
Latency
Connected clients
Replication lag

Establishing alerts based on predefined thresholds is crucial. Consider setting alerts
for:

High CPU usage (exceeding 80%)

Memory usage approaching the maxmemory limit
Replication lag exceeding a defined threshold (e.g., 10 seconds)
A surge in the number of connected clients

Page 8 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Routine Maintenance

Regular maintenance is vital for preventing performance degradation and ensuring
data integrity. We recommend performing the following tasks on a weekly basis:

» Execute SAVE or BGSAVE commands to create backups of your data.

» Monitor slow queries to identify and address potential performance
bottlenecks.

« Review Redis logs for any errors or warnings that may indicate underlying
issues.

Cost-Benefit Analysis

This section details the anticipated costs and benefits of implementing the
proposed Redis optimization strategies for ACME-1. We expect a significant return
on investment (ROI) within six months. This will be achieved through a
combination of reduced infrastructure expenses, enhanced application
performance, and increased revenue stemming from an improved user experience.

Resource and Operational Costs

The optimization process carries resource implications. We anticipate needing
additional memory for tasks like replication and caching. CPU usage will likely
increase during rebalancing procedures. Network bandwidth consumption will also
rise due to replication traffic. Operationally, the ACME-1 team will need to allocate
time for monitoring the Redis deployment. Configuration adjustments and periodic
upgrades are also factored into the cost.

Performance Gains and Business Value

Improvements in Redis performance directly translate to tangible business benefits
for ACME-1. Decreased page load times are a primary outcome, leading to a better
user experience on ACME-1 platforms. Faster response times contribute to higher
customer satisfaction. These factors will likely increase conversion rates. Efficient
resource utilization can reduce ACME-1 infrastructure costs.

Page 9 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Projected ROI

The projected ROI timeline is six months. This considers savings from lower
infrastructure costs. We also considered improved application performance. We
have factored in potential revenue increases resulting from a better user experience.

Conclusion and Next Steps

Our analysis reveals several key areas for Redis optimization within ACME-1’s
current infrastructure. These include memory management, scaling strategies, and
the establishment of robust monitoring practices. Addressing these areas will
significantly improve Redis performance and stability.

Immediate Actions

We recommend the following immediate actions to realize quick wins:

« Configure maxmemory and maxmemory-policy: This will prevent out-of-
memory errors and ensure efficient memory utilization.

« Enable Slow Log Monitoring: This will help identify and address performance
bottlenecks.

« Implement Replication: This will improve data durability and availability.

Measuring Success

Post-implementation, we will monitor key performance indicators (KPIs) such as
latency, throughput, error rates, and resource utilization. We will compare these
metrics against the established baseline to quantify the improvements achieved
through optimization efforts.

Next Steps

To begin the optimization process, we propose a meeting to discuss a detailed
implementation plan, including timelines and resource allocation. Following this
meeting, we can proceed with the configuration changes and monitoring setup
outlined above.

Page 10 of 10

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

