
Table of Contents
Executive Summary 3

Key Objectives 3

Migration Scope and Timeline 3

Expected Benefits 3

Current Infrastructure Assessment 4

Current Technology Stack 4

Pain Points and Limitations 4

Targeted Applications and Services 4

System Components Distribution 5

Migration Strategy and Approach 5

Containerization Approach 5

Migration Phases 5

Technology Stack 6

Timeline Visualization 6

Risk Assessment and Mitigation 7

Technical Risks 7

Business Risks 8

Fallback and Rollback 8

Cost Analysis and Budgeting 9

Migration Costs 9

Ongoing Operational Costs 9

Cost Savings and ROI 10

Budgeting Considerations 10

Implementation Plan and Timeline 10

Project Phases and Milestones 11

Detailed Implementation Steps 11

Roles and Responsibilities 11

Timeline 12

Testing and Validation Strategy 12

Testing Methodologies 13

Validation in Staging Environments 13

Acceptance Criteria 13

Rollback and Disaster Recovery Plan 14

Page 1 of 16



Rollback Procedures 14

Disaster Recovery Strategies 14

Communication Plan 15

Appendices and References 15

Supporting Documents 15

Technical References 15

Supplementary Materials 15

Glossary of Terms 16

Useful Links 16

Page 2 of 16



Executive Summary

This Docker Migration Proposal outlines a plan for DocuPal Demo, LLC to assist
ACME-1 in migrating its infrastructure to Docker containers. This migration is
driven by ACME-1's need for increased agility, faster deployments, improved
scalability, and reduced infrastructure costs.

Key Objectives

The primary objective is to containerize ACME-1's applications using Docker,
leading to a more efficient and portable infrastructure. The migration will enhance
portability, simplify deployments, optimize resource utilization, and improve
developer productivity.

Migration Scope and Timeline

The migration will be executed in two phases. Phase 1 will focus on migrating non-
critical applications within a 3-month timeframe. Phase 2 will address the
migration of critical applications, planned for completion within 6 months.

Expected Benefits

By adopting Docker, ACME-1 can expect to see significant improvements across
several key areas:

Enhanced Portability: Docker containers ensure applications can run
consistently across different environments.
Simplified Deployments: Streamlined deployment processes leading to faster
release cycles.
Resource Optimization: Efficient allocation of resources resulting in reduced
infrastructure costs.
Improved Developer Productivity: A standardized environment that simplifies
development and testing.

Page 3 of 16



Current Infrastructure Assessment

ACME-1's current infrastructure relies on a mix of on-premise servers. These
servers operate with both Windows Server 2016 and CentOS 7.

Current Technology Stack

The technology stack includes:

.NET Framework
Java
MySQL databases

These technologies support ACME-1's web applications, API services, and database
servers. These form the core of their operational capabilities.

Pain Points and Limitations

ACME-1 faces several challenges with its current setup. These include:

Slow Deployment Cycles: Deploying new applications or updates is a time-
consuming process.
Resource Inefficiencies: The current infrastructure does not fully utilize
available resources, leading to wasted capacity.
Lack of Scalability: Scaling applications to meet increased demand is difficult
and often requires significant manual intervention.
Complex Dependency Management: Managing dependencies between
different applications and services is complex, increasing the risk of conflicts
and errors.

Targeted Applications and Services

The migration to Docker will focus on:

Web applications
API services
Database servers

Page 4 of 16



These components are critical to ACME-1's operations.

System Components Distribution

The following chart illustrates the distribution of system components across the
current infrastructure:

Migration Strategy and Approach

Docupal Demo, LLC will use a phased approach to migrate ACME-1's infrastructure
to Docker containers. This strategy aims to minimize disruption, reduce risk, and
ensure a smooth transition. Our primary method involves lift-and-shift for the
initial migration. Subsequently, we'll refactor components to optimize their
containerization.

Containerization Approach

We will encapsulate existing applications and their dependencies into Docker
containers. This approach ensures consistency across different environments. It
also simplifies deployment and scaling. We will leverage Docker Compose to define
and manage multi-container applications.

Migration Phases

1. Assessment and Planning: We'll conduct a detailed assessment of ACME-1's
current infrastructure and applications. This assessment will identify
dependencies, compatibility issues, and potential challenges. The planning
phase will define the migration roadmap, including timelines, resource
allocation, and success criteria.

2. Environment Setup: We will set up the necessary Docker environment. This
includes installing Docker, Docker Compose, and Kubernetes (if required). We
will also configure networking and storage to support the containerized
applications.

3. Lift-and-Shift: We will migrate applications to Docker containers with
minimal code changes during the lift-and-shift phase. This involves creating
Docker images for each application and deploying them to the Docker
environment.

Page 5 of 16



4. Integration and Testing: We'll integrate Docker containers into ACME-1's
existing CI/CD pipeline using Jenkins. Thorough testing will be conducted to
ensure that the migrated applications function correctly. This includes unit
tests, integration tests, and user acceptance tests.

5. Refactoring and Optimization: After the initial migration, we will refactor
applications to take full advantage of Docker's capabilities. This includes
optimizing resource utilization, improving scalability, and enhancing security.

6. Monitoring and Management: We will implement monitoring tools such as
Prometheus and Grafana to track the performance and health of the
containerized applications. We will also establish procedures for managing and
maintaining the Docker environment.

Technology Stack

Docker: Containerization platform for packaging and running applications.
Docker Compose: Tool for defining and managing multi-container
applications.
Kubernetes: Orchestration platform for automating deployment, scaling, and
management of containerized applications.
Ansible: Automation tool for configuration management and application
deployment.
Prometheus: Monitoring tool for collecting and storing metrics.
Grafana: Data visualization tool for creating dashboards and monitoring
application performance.

Timeline Visualization

The following chart provides a high-level overview of the migration phases and
their estimated durations.

Page 6 of 16



Risk Assessment and Mitigation

Migrating to Docker involves inherent technical and business risks. We have
identified key risks and outlined mitigation strategies to ensure a smooth transition
for ACME-1.

Technical Risks

Containerization Complexities: Successfully containerizing existing
applications can be challenging. Applications may require code modifications
or architectural adjustments to function optimally within containers.

Mitigation: We will conduct a thorough assessment of each application to
identify potential compatibility issues. Our team will utilize best practices
for containerization, including modularization and dependency
management, to minimize complexities.

Security Vulnerabilities: Docker containers, if not properly configured, can
introduce security vulnerabilities. Misconfigured images, insecure registries,
and inadequate resource isolation can expose ACME-1 to potential threats.

Mitigation: We will implement robust security measures, including
regularly scanning container images for vulnerabilities, enforcing strict
access controls, and utilizing secure container registries. We will also

Page 7 of 16



follow security best practices, such as the principle of least privilege, to
minimize the attack surface.

Business Risks

Potential Downtime: Migration can lead to service disruptions if not carefully
managed. Data migration and application cutover procedures can potentially
cause downtime, impacting ACME-1's operations.

Mitigation: We will minimize downtime through blue/green deployments
and canary releases. This approach allows us to validate the new
environment before fully transitioning traffic, reducing the risk of
prolonged outages.

Cost Overruns: Unexpected complexities or delays can lead to increased
migration costs. Unforeseen issues, such as application refactoring or
infrastructure upgrades, can strain ACME-1's budget.

Mitigation: We will closely monitor project progress and proactively
identify potential cost overruns. Change management processes will be
implemented to control scope and prevent unnecessary expenses. We will
also maintain transparent communication with ACME-1 regarding any
potential budget adjustments.

Fallback and Rollback

In the event of a failure during the migration, we have established rollback plans. We
will revert to the previous infrastructure setup and restore data from backups. This
ensures minimal disruption to ACME-1's operations.

Page 8 of 16



Cost Analysis and Budgeting

This section outlines the costs associated with migrating ACME-1's infrastructure to
Docker containers and the projected return on investment (ROI). We have
considered initial migration expenses, ongoing operational costs, and potential cost
savings.

Migration Costs

The estimated cost for the initial Docker migration is $50,000. This includes:

Assessment and Planning: $10,000
Containerization and Configuration: $25,000
Testing and Validation: $10,000
Deployment and Training: $5,000

Ongoing Operational Costs

Following the migration, the estimated ongoing operational costs are $10,000 per
month. These costs cover:

Infrastructure Maintenance: Server upkeep, monitoring, and security.

Page 9 of 16



Container Orchestration: Management of Docker containers using tools like
Kubernetes.
Personnel: Salaries for specialized staff with Docker and containerization
expertise.
Licensing: Adjustments to software licenses that are impacted by
containerization.

Cost Savings and ROI

Containerization offers several opportunities for cost savings. We project a 20%
reduction in infrastructure costs due to optimized resource utilization. Deployment
times are expected to improve by 30%, leading to faster releases and increased
efficiency.

Area
Current Cost

(Monthly)
Projected Cost

(Monthly)
Savings

(Monthly)

Infrastructure $20,000 $16,000 $4,000

Deployment
Manpower

$5,000 $3,500 $1,500

Total $25,000 $19,500 $5,500

Based on these savings, we project an ROI of 150% within two years. This
calculation considers the initial migration costs and the ongoing operational
savings.

Budgeting Considerations

ACME-1 should consider the following budgeting factors:

Licensing: Review current software licenses to determine if adjustments are
needed for containerized environments.
Infrastructure: While cost savings are expected, ensure sufficient budget for
necessary infrastructure upgrades or cloud services.
Manpower: Allocate budget for training existing staff or hiring new personnel
with Docker and containerization skills.
Contingency: Include a contingency fund to address unforeseen issues or cost
overruns during the migration process.

Page 10 of 16



Implementation Plan and Timeline

This section outlines the plan to migrate ACME-1's infrastructure to Docker
containers. It includes key milestones, timelines, and responsibilities. We will use
project management tools like Jira to track progress. Regular status updates will be
provided to key stakeholders, including the CIO, CTO, and project managers.

Project Phases and Milestones

The Docker migration will be executed in three key phases:

1. Setup Docker Environment (1 Month): This initial phase focuses on
establishing the foundational Docker infrastructure.

2. Migrate Non-Critical Applications (3 Months): This phase involves migrating
applications that are not essential for day-to-day operations. This allows us to
test the Docker environment and migration process.

3. Migrate Critical Applications (6 Months): The final phase focuses on
migrating the core applications that are critical for ACME-1's business. This
will be done after successful migration of non-critical applications.

Detailed Implementation Steps

1. Assessment and Planning: We will start with a detailed assessment of the
existing infrastructure. This helps us understand the application dependencies
and resource requirements.

2. Environment Setup: We will configure the Docker environment. This includes
setting up Docker hosts, networking, and storage.

3. Image Creation: Docker images will be created for each application. This
involves defining the application dependencies and configurations.

4. Testing and Validation: Rigorous testing will be conducted to ensure the
migrated applications function correctly. This includes functional,
performance, and security testing.

5. Deployment: The Docker containers will be deployed to the production
environment. This will be done in a controlled manner to minimize disruption.

6. Monitoring and Optimization: Continuous monitoring and optimization will
be performed to ensure optimal performance and stability.

Page 11 of 16



Roles and Responsibilities

Infrastructure Team: Responsible for setting up and maintaining the Docker
environment.
Development Team: Responsible for creating Docker images and ensuring
application compatibility.
Operations Team: Responsible for deploying and monitoring the Docker
containers.

Timeline

Task Start Date End Date Duration Responsible Team

Setup Docker
Environment

2025-09-
01

2025-09-
30

1 Month
Infrastructure
Team

Migrate Non-Critical Apps 2025-10-01 2025-12-31 3 Months Development Team

Migrate Critical Apps 2026-01-01
2026-06-
30

6
Months

Development Team

Page 12 of 16



Testing and Validation Strategy

We will employ a comprehensive testing and validation strategy to guarantee a
smooth and successful Docker migration for ACME-1. Our approach includes
rigorous testing at each stage of the migration process, along with clearly defined
acceptance criteria.

Testing Methodologies

We will use several types of testing:

Functional Testing: This will verify that all application features work as
expected after the migration. We will execute test cases to ensure each
function performs correctly within the Docker containers.
Performance Testing: Using JMeter, we will assess the application's
performance, focusing on response times, throughput, and resource
utilization. This will confirm that the Dockerized application meets ACME-1’s
performance requirements and identify potential bottlenecks.
Security Testing: We will conduct security assessments using tools like
OWASP ZAP. This will help identify and address vulnerabilities in the Docker
containers and ensure the application remains secure.

Validation in Staging Environments

Before deploying to production, we will validate container deployments in staging
environments. This involves:

Automated Testing: Running automated test suites to verify functionality and
performance.
Performance Monitoring: Closely monitoring key performance indicators
(KPIs) such as CPU usage, memory consumption, and network latency. This
will help us identify and resolve any performance issues before they impact the
production environment.

Acceptance Criteria

The success of the Docker migration will be measured against the following
acceptance criteria:

Page 13 of 16



Zero Downtime Deployments: Deployments to the Docker environment must
occur with zero downtime, ensuring continuous application availability for
ACME-1 users.
Improved Application Performance: The migrated application should
demonstrate improved performance compared to the pre-migration
environment. This includes faster response times and increased throughput.
Reduced Infrastructure Costs: The Docker migration should lead to reduced
infrastructure costs through more efficient resource utilization and simplified
management.

Our quality assurance processes include continuous monitoring and feedback loops
to address any issues promptly and ensure the final Docker environment meets
ACME-1’s requirements.

Rollback and Disaster Recovery Plan

This plan outlines the procedures for reverting to the pre-migration state (rollback)
and recovering from unforeseen disasters following the Docker migration. Our
primary goal is to minimize downtime and data loss, ensuring business continuity
for ACME-1.

Rollback Procedures

Rollback will be initiated if critical application failures, security breaches, or
unacceptable performance degradation occur post-migration. The rollback process
involves reverting the affected applications and data to their original state before
the migration. This includes restoring databases from pre-migration backups. We
will perform transactional integrity checks during the rollback to ensure data
consistency. The rollback will utilize a phased approach, starting with the most
critical systems. This minimizes impact and allows for thorough validation at each
stage. We will maintain detailed logs throughout the rollback process for auditing
and troubleshooting.

Disaster Recovery Strategies

Our disaster recovery strategy includes maintaining up-to-date backups of all
critical systems and data. These backups will be stored in a geographically separate
location to protect against site-wide failures. We will regularly test our disaster
recovery procedures to ensure their effectiveness. This includes simulating various

Page 14 of 16



failure scenarios and validating recovery times. The disaster recovery plan also
includes procedures for quickly restoring services in the event of a disaster. This
includes automated scripts for deploying applications and restoring data.

Communication Plan

In the event of a rollback or disaster recovery situation, clear and consistent
communication is crucial. We have established designated incident response teams
with defined roles and responsibilities. Escalation procedures are in place to ensure
timely decision-making. Regular updates will be provided to all stakeholders,
including ACME-1's IT staff and management, throughout the incident. We will use
multiple communication channels, including email, phone, and a dedicated incident
communication platform, to ensure that everyone stays informed.

Appendices and References

Supporting Documents

This section provides supplementary information to support the Docker migration
proposal. It includes detailed architecture diagrams illustrating the current and
proposed infrastructure. Deployment guides offer step-by-step instructions for the
migration process. Troubleshooting procedures outline common issues and their
resolutions. These documents will be regularly updated throughout the migration.

Technical References

We adhere to industry best practices and security standards. Docker security best
practices will be followed to ensure a secure container environment. NIST
guidelines for container security are referenced for compliance. We also incorporate
industry standards for CI/CD pipelines to streamline development and deployment.

Supplementary Materials

Additional resources are available to enhance understanding of the proposed
solution. Case studies demonstrate successful Docker migrations in similar
environments. Vendor documentation from Docker and other relevant technology

Page 15 of 16



providers offers in-depth information about the tools and platforms used. Training
resources are provided to equip your team with the knowledge and skills needed to
manage the new containerized environment.

Glossary of Terms

Term Definition

Docker
A platform for developing, shipping, and running applications in
containers.

Container
A standardized unit of software that packages up code and all its
dependencies.

CI/CD Continuous Integration/Continuous Deployment.

NIST National Institute of Standards and Technology.

Image A read-only template used to create containers.

Registry A storage and distribution system for Docker images.

Orchestration
The automated arrangement, coordination, and management of
computer systems, applications, and services.

Useful Links

Docker Official Documentation: https://docs.docker.com/
NIST Container Security Guidelines: https://www.nist.gov/
CI/CD Best Practices: [Insert specific link to a relevant resource]
DocuPal Demo, LLC Website: [Insert DocuPal Demo, LLC website address]

Page 16 of 16


