
Table of Contents
Executive Summary 3

Migration Benefits 3

Recommended Approach 3

Current Jenkins Environment Assessment 3

Infrastructure Overview 3

Pipeline Complexity 4

Plugin Usage 4

Performance Metrics 4

Pipeline Job Distribution 5

Migration Strategy and Approach 5

Phased Migration Approach 5

Tools and Automation 6

Downtime Minimization 6

Infrastructure and Tooling Requirements 7

New Infrastructure Needs 7

Software Dependencies and Tool Integrations 7

Risk Assessment and Mitigation Plan 8

Potential Risks 8

Mitigation Strategies 8

Risk Monitoring and Communication 9

Contingency Plans 9

Risk Impact vs. Likelihood 9

Cost Analysis and Budgeting 9

Migration Cost Breakdown 10

Training and Documentation Plan 11

Training Programs 11

Documentation Strategy 11

Support Resources 11

Rollback and Disaster Recovery Plan 11

Rollback Procedures 12

Disaster Recovery Strategies 12

Conclusion and Recommendations 12

Next Steps 12

Page 1 of 12



Key Takeaways 12

Page 2 of 12



Executive Summary

This proposal outlines DocuPal Demo, LLC's plan to migrate Acme, Inc's Jenkins
infrastructure. The migration aims to improve scalability, enhance security, and
reduce maintenance overhead. Key stakeholders include the Development,
Operations, and Security teams, along with the Project Management Office.

Migration Benefits

This migration will increase development velocity and improve system stability. It
also promises to reduce operational costs.

Recommended Approach

We recommend a phased migration strategy. This approach minimizes downtime
and ensures a smooth transition. The proposal details the tools, infrastructure
changes, and scaling considerations. It also addresses risk management, training,
documentation, and ongoing support. Approving this migration offers a compelling
business case for ACME-1.

Current Jenkins Environment
Assessment

ACME-1's current Jenkins environment is a critical component of their software
development lifecycle. Our assessment reveals a complex system that requires
careful planning for migration.

Infrastructure Overview

The existing Jenkins infrastructure primarily resides on virtual machines hosted
within ACME-1's on-premise data center. There are three Jenkins master servers,
each dedicated to specific teams or project lines. These masters manage
approximately 150 build agents, a mix of both Linux and Windows machines,

Page 3 of 12



provisioned using VMware. The agents are distributed geographically across three
sites: Wilsonville (Oregon), Atlanta (Georgia), and Austin (Texas). Each site has a
dedicated pool of agents to support local development teams.

Pipeline Complexity

ACME-1's Jenkins pipelines vary significantly in complexity. Some pipelines are
relatively simple, consisting of basic build, test, and deployment steps. Others are
highly complex, involving multiple stages, parallel execution, and integration with
various external tools and services. The more intricate pipelines often include
custom scripts and plugins to meet specific project requirements. We observed that
approximately 30% of pipelines are considered highly complex, requiring
specialized knowledge for maintenance and troubleshooting.

Plugin Usage

The current Jenkins environment relies heavily on a wide range of plugins to extend
its functionality. Our analysis identified over 80 different plugins installed across
the three master servers. Some of the most commonly used plugins include:

Git Plugin
Maven Integration Plugin
JUnit Plugin
Cobertura Plugin
Artifactory Plugin
Docker Plugin
Amazon EC2 Plugin

While these plugins provide valuable features, the large number of plugins
introduces potential compatibility issues and security vulnerabilities. Managing
plugin updates and dependencies is an ongoing challenge for the ACME-1 team.

Performance Metrics

We gathered performance metrics from the existing Jenkins environment to
understand its current capacity and identify potential bottlenecks. Key metrics
include:

Page 4 of 12



Build Time: Average build time varies depending on the complexity of the
pipeline and the availability of build agents. Simple builds typically complete in
under 10 minutes, while complex builds can take up to an hour or more.
Build Success Rate: The overall build success rate is approximately 95%.
Failures are often due to issues with external dependencies, code defects, or
infrastructure problems.
System Load: The Jenkins master servers experience moderate system load
during peak hours. CPU utilization averages around 60%, while memory
utilization is around 70%.
Queue Time: Build queue times can be significant during peak periods,
particularly for complex pipelines. This indicates a need for additional build
agents or optimization of pipeline configurations.

Pipeline Job Distribution

The distribution of pipeline jobs across teams and sites are illustrated below:

Migration Strategy and Approach

We propose a phased migration strategy for ACME-1's Jenkins infrastructure. This
approach minimizes risk and disruption while allowing for continuous
improvement and validation at each stage.

Phased Migration Approach

Our migration will proceed through distinct phases:

1. Assessment and Planning: We will conduct a thorough assessment of the
existing Jenkins environment. This includes analyzing current configurations,
identifying dependencies, and defining migration goals. A detailed migration
plan will be created, outlining timelines, responsibilities, and success criteria.

2. Pilot Migration: A subset of Jenkins jobs and configurations will be migrated
to the new environment. This pilot phase will serve as a proof of concept,
allowing us to identify and address any potential issues before the full
migration.

3. Incremental Migration: We will migrate Jenkins jobs and configurations in
batches, prioritizing those with the least dependencies and complexity. This
incremental approach allows for continuous validation and reduces the risk of
large-scale failures.

Page 5 of 12



4. Testing and Validation: Rigorous testing will be conducted after each
migration phase to ensure functionality and performance. This includes unit
tests, integration tests, and user acceptance tests.

5. Cutover and Go-Live: Once all Jenkins jobs and configurations have been
migrated and tested, we will perform a final cutover to the new environment.
This will involve switching DNS records and redirecting traffic to the new
infrastructure.

6. Post-Migration Support: We will provide ongoing support and monitoring to
ensure the stability and performance of the migrated Jenkins environment.
This includes addressing any issues that may arise and providing training to
ACME-1's staff.

Tools and Automation

We will leverage tools and automation to streamline the migration process and
minimize manual effort. Key tools include:

Jenkins Configuration as Code (JCasC): This will be used to define and
manage Jenkins configurations in a declarative manner, enabling automated
provisioning and configuration of the new environment.
Infrastructure as Code (IaC): We will use Terraform and Ansible to automate
the provisioning and management of the underlying infrastructure. This
ensures consistency and repeatability.

Downtime Minimization

We will employ several techniques to minimize downtime during the migration:

Blue/Green Deployments: We will create a parallel environment (the "green"
environment) to which we migrate the Jenkins configurations. Once testing is
complete, we will switch traffic from the "blue" (old) environment to the
"green" (new) environment.
Careful Scheduling: Migration activities will be scheduled during off-peak
hours to minimize disruption to ACME-1's business operations.
Thorough Testing: Comprehensive testing will be conducted before each
migration phase to ensure a smooth transition and minimize the risk of
unexpected issues.

Page 6 of 12



Infrastructure and Tooling Requirements

This section outlines the infrastructure and tooling necessary for a successful
Jenkins migration.

New Infrastructure Needs

The migration will require new infrastructure to support the modernized Jenkins
environment. We recommend a cloud-based solution for enhanced scalability and
reliability. This will involve provisioning resources on a platform like AWS, Azure, or
GCP. The specific instance types and sizes will be determined based on ACME-1's
current and projected build loads.

We will implement Kubernetes-based Jenkins agents to dynamically scale the build
execution environment. This approach allows us to efficiently manage resources
and handle fluctuating demands. Autoscaling will be configured to automatically
adjust the number of agents based on real-time metrics, ensuring optimal
performance and resource utilization.

Software Dependencies and Tool Integrations

The new Jenkins environment will require specific software dependencies,
including Java, Docker, and Kubernetes command-line tools (kubectl). We will
automate the installation and configuration of these dependencies using
infrastructure-as-code principles.

Integration with existing ACME-1 tools, such as source code repositories (e.g., Git),
artifact repositories (e.g., Artifactory), and deployment platforms, is crucial. We will
configure Jenkins to seamlessly interact with these tools, ensuring a smooth and
efficient CI/CD pipeline. Monitoring and alerting tools will be integrated to provide
real-time visibility into the health and performance of the Jenkins environment.
This includes setting up dashboards, alerts, and notifications to proactively identify
and address potential issues.

Page 7 of 12



Risk Assessment and Mitigation Plan

We've identified potential risks associated with the Jenkins migration. These risks
could impact the project timeline, budget, or overall success. We will actively
monitor and manage these risks throughout the migration process. Our approach
includes real-time monitoring dashboards, regular status meetings, and proactive
communication with Acme, Inc.

Potential Risks

Plugin Compatibility Issues: Some existing Jenkins plugins may not be
compatible with the target Jenkins environment. This could lead to build
failures or require significant rework.
Unforeseen Downtime: Unexpected issues during the migration process could
result in downtime exceeding the planned maintenance window.
Data Loss: Although unlikely, there's a risk of data loss during the migration of
Jenkins configurations, build history, and artifacts.

Mitigation Strategies

To minimize the impact of these risks, we've developed the following mitigation
strategies:

Plugin Compatibility: We will conduct thorough compatibility testing of all
existing plugins in a staging environment before the production migration.
Incompatible plugins will be replaced with compatible alternatives or custom
solutions will be developed.
Downtime Minimization: We will use a phased migration approach to
minimize downtime. We will also implement robust rollback procedures in
case of critical issues during the migration.
Data Loss Prevention: We will perform automated backups of all Jenkins data
before the migration. We will also verify the integrity of the migrated data after
the migration is complete.

Risk Monitoring and Communication

We will use real-time monitoring dashboards to track the progress of the migration
and identify any potential issues. Regular status meetings with Acme, Inc. will
provide updates on the migration progress and address any concerns. A dedicated

Page 8 of 12



support team will be available to respond to any issues that arise during the
migration.

Contingency Plans

We have established contingency plans to address potential issues that may arise
during the migration:

Automated Backups: Automated backups will allow for quick restoration of the
previous environment in case of failure.
Rollback Procedures: Clearly defined rollback procedures will enable us to
revert to the previous Jenkins environment if necessary.
Dedicated Support Team: A dedicated support team will be available to
troubleshoot and resolve any issues that arise during the migration.

Risk Impact vs. Likelihood

Risk Impact Likelihood Mitigation Strategy

Plugin
Compatibility
Issues

Medium Medium
Thorough compatibility testing in a
staging environment; identify and replace
incompatible plugins.

Unforeseen
Downtime

High Low
Phased migration approach; robust
rollback procedures; comprehensive
testing.

Data Loss Critical Very Low
Automated backups before migration; data
integrity verification after migration.

Cost Analysis and Budgeting

The projected cost for migrating ACME-1's Jenkins infrastructure is $50,000. This
investment offers significant cost advantages compared to maintaining the current
environment. Over three years, the migration is estimated to be 30% cheaper. Post-
migration, ACME-1 can expect an ROI of $20,000 per year in reduced operational
expenses, alongside a 15% increase in development velocity.

Page 9 of 12



Migration Cost Breakdown

The $50,000 migration budget covers several key areas:

Manpower: This includes the cost of our expert engineers and project
managers who will handle the migration process, ensuring a smooth
transition.
Software Licenses: Necessary licenses for migration tools and any new
Jenkins plugins required for the target environment are included.
Training: We will provide training for ACME-1's team to effectively manage the
new Jenkins environment.
Hardware: Covers costs related to new server or cloud infrastructure.

The pie chart above illustrates the distribution of costs across these categories. The
manpower cost is the largest portion of the budget.

Training and Documentation Plan

Effective training and comprehensive documentation are critical for a smooth
transition and successful adoption of the new Jenkins environment. We will provide
targeted training programs, automated documentation, and ongoing support
resources.

Page 10 of 12



Training Programs

We will conduct training sessions to equip your teams with the necessary skills. Key
areas of focus include Jenkins administration, Kubernetes basics, and Infrastructure
as Code (IaC) principles. These programs will empower your staff to manage and
maintain the new Jenkins infrastructure effectively. Training will be hands-on and
tailored to different roles within your organization.

Documentation Strategy

Our documentation strategy emphasizes automation and version control. We will
employ automated documentation generation tools to ensure accuracy and
consistency. All documentation will be maintained in a version control system,
allowing for easy updates and collaboration. We will create a comprehensive
knowledge base with articles addressing common issues and best practices.

Support Resources

Following the migration, a dedicated support team will be available to address any
questions or issues. We will also leverage vendor support channels for complex
problems. Online documentation, including FAQs and troubleshooting guides, will
provide self-service resources.

Rollback and Disaster Recovery Plan

This plan outlines the procedures for reverting to the previous Jenkins state
(rollback) and recovering from a major disruption (disaster recovery). It ensures
minimal disruption to ACME-1's operations.

Rollback Procedures

Rollback will be initiated if we encounter critical system failure, data corruption, or a
prolonged outage during the migration. The rollback process involves reverting the
Jenkins instance to its pre-migration state using pre-migration backups and
snapshots. Data validation scripts will verify data consistency after the rollback. We
will also use database replication and transaction monitoring.

Page 11 of 12



Disaster Recovery Strategies

Our disaster recovery strategy ensures business continuity. It includes maintaining
offsite backups of the Jenkins configuration and data. The Recovery Time Objective
(RTO) is 4 hours. This means we aim to restore Jenkins functionality within 4 hours
of a disaster. The disaster recovery plan will be tested regularly to ensure its
effectiveness.

Conclusion and Recommendations

This migration to a modern, scalable Jenkins infrastructure presents a strong
business case for ACME-1. The anticipated cost savings and gains in development
velocity offer substantial benefits.

Next Steps

Following approval, we recommend scheduling a kickoff meeting. The migration
plan will then be finalized. Concurrent with this, the necessary infrastructure setup
should begin.

Key Takeaways

Approving this migration will give ACME-1 a more efficient and cost-effective CI/CD
pipeline. This will reduce operational overhead and improve speed and reliability.
The modern platform will better support your development teams.

Page 12 of 12


