
Table of Contents
Introduction and Objectives 3

Introduction 3

Objectives 3

Automation of Software Delivery 3

Improvement of Code Quality 3

Reduction of Manual Deployment Steps 3

Current Environment Overview 4

Build Process and Frequency 4

Build Failure Rate 4

Automation Gaps and Bottlenecks 4

Proposed GitLab CI Architecture 4

Pipeline Structure and Triggering 4

GitLab Runner Configuration and Scaling 5

Integrated Environments 5

Pipeline Stages and Runner Interactions 5

Implementation Plan and Timeline 6

Phased Implementation 6

Resource Allocation 7

Timeline 7

Training and Onboarding 8

Risk Assessment and Mitigation Strategies 8

Technical Risks 8

Operational Risks 8

Fallback and Rollback 9

Benefits and Impact Analysis 9

Key Performance Improvements 9

Accelerated Delivery Cycles 9

Qualitative Team Benefits 9

Cost Analysis and Budgeting 10

Initial Investment 10

Recurring Costs 10

Investment vs. Alternatives 10

Return on Investment 11

Page 1 of 12



Conclusion and Recommendations 11

Next Steps 11

Monitoring and Optimization 11

Appendices and Supporting Materials 11

GitLab CI Documentation 11

Pipeline Configuration Templates 12

External Resources 12

GitLab CI Best Practices 12

Glossary of Terms 12

Reference Links 12

Page 2 of 12



Introduction and Objectives

Introduction

This document outlines a proposal from Docupal Demo, LLC to Acme, Inc (ACME-1)
for the integration of GitLab CI into your existing software development lifecycle.
Our goal is to streamline ACME-1's build, test, and deployment processes through
automation. We will integrate GitLab CI to complement your current Git-based
workflows. This integration aims to reduce manual intervention, accelerate
deployments, and enhance overall code quality.

Objectives

Automation of Software Delivery

The primary objective is to automate the software delivery pipeline. GitLab CI will
be configured to automatically build, test, and deploy code changes, which
minimizes human errors and accelerates release cycles.

Improvement of Code Quality

By automating testing processes, we expect to see a noticeable improvement in code
quality. Automated testing will catch potential bugs and issues early in the
development process.

Reduction of Manual Deployment Steps

This integration is designed to significantly reduce the manual effort involved in
deploying applications. The automated pipeline will handle many steps, freeing up
development teams to focus on development tasks.

Page 3 of 12



Current Environment Overview

Acme, Inc. currently uses Jenkins for its CI/CD processes. The software development
and deployment environment relies heavily on this system to build and deploy
applications.

Build Process and Frequency

Builds are performed on a daily basis. This regular cadence ensures that code
changes are frequently integrated and tested.

Build Failure Rate

The current build failure rate is approximately 15%. This indicates potential areas
for improvement within the CI/CD pipeline to enhance stability and reliability.

Automation Gaps and Bottlenecks

Several automation gaps and bottlenecks exist within the current workflow. Manual
deployment steps introduce delays and potential for human error. Slow feedback
loops in testing further impede the development process, increasing the time
required to identify and resolve issues.

Proposed GitLab CI Architecture

The proposed GitLab CI architecture will provide ACME-1 with a robust and
automated software development lifecycle. This architecture leverages GitLab CI
YAML files for pipeline definition, Docker for runner configuration, and GitLab's
autoscaling capabilities for runner scaling. The integration will encompass
development, testing, and staging environments.

Pipeline Structure and Triggering

GitLab CI pipelines will be defined using .gitlab-ci.yml files within each repository.
These files will specify the stages, jobs, and dependencies within the pipeline.
Pipelines will be triggered automatically upon code commits to the repository.

Page 4 of 12



Scheduled events can also trigger pipelines for tasks like nightly builds or scheduled
deployments.

GitLab Runner Configuration and Scaling

GitLab Runners will execute the jobs defined in the pipelines. We will configure
runners using Docker to ensure consistent and reproducible environments. Docker
images will contain all necessary dependencies for building, testing, and deploying
the application. GitLab's autoscaling features will dynamically adjust the number of
runners based on demand. This ensures that pipelines are executed promptly, even
during peak periods. Autoscaling will be configured to minimize costs during
periods of low activity.

Integrated Environments

The GitLab CI architecture will integrate with three key environments:
development, testing, and staging. Each environment will have its own dedicated
set of runners and deployment configurations.

Development Environment: Pipelines triggered by commits to development
branches will deploy to the development environment. This allows developers
to quickly test their changes.
Testing Environment: Pipelines will run automated tests against code
deployed in the testing environment. This ensures code quality and identifies
potential issues early in the development cycle.
Staging Environment: The staging environment mirrors the production
environment and is used for final testing and validation before release.
Pipelines will deploy to the staging environment after successful testing.

Pipeline Stages and Runner Interactions

The following diagram illustrates the typical stages in a GitLab CI pipeline and how
runners interact with them:

graph LR A[Code Commit] --> B(GitLab CI Pipeline Trigger); B --> C{Build Stage}; C
--> D{Test Stage}; D --> E{Deploy Stage}; C --> F[GitLab Runner 1]; D --> G[GitLab
Runner 2]; E --> H[GitLab Runner 3]; F --> I((Development Environment)); G -->
J((Testing Environment)); H --> K((Staging Environment)); style A
fill:#f9f,stroke:#333,stroke-width:2px style B fill:#ccf,stroke:#333,stroke-width:2px
style C fill:#ccf,stroke:#333,stroke-width:2px style D fill:#ccf,stroke:#333,stroke-

Page 5 of 12



width:2px style E fill:#ccf,stroke:#333,stroke-width:2px style F
fill:#ffc,stroke:#333,stroke-width:2px style G fill:#ffc,stroke:#333,stroke-width:2px
style H fill:#ffc,stroke:#333,stroke-width:2px style I fill:#cfc,stroke:#333,stroke-
width:2px style J fill:#cfc,stroke:#333,stroke-width:2px style K
fill:#cfc,stroke:#333,stroke-width:2px

Implementation Plan and Timeline

Docupal Demo, LLC will deliver a seamless GitLab CI integration for ACME-1
through a phased approach. This plan outlines key activities, resource allocation,
and timelines to ensure a successful implementation.

Phased Implementation

1. Phase 1: Setup and Configuration (Estimated Duration: 2 weeks)

Activities: This phase focuses on setting up the GitLab environment and
configuring necessary settings. We will install and configure GitLab
Runner instances to provide the execution environment for CI/CD
pipelines. We will also establish secure connections to ACME-1's existing
infrastructure.
Deliverables: Configuration files, environment setup documentation.
Resources: One DevOps engineer will lead the setup and configuration.

2. Phase 2: Pipeline Implementation (Estimated Duration: 4 weeks)

Activities: During this phase, we will develop and implement CI/CD
pipelines tailored to ACME-1's specific application requirements. This
includes scripting build, test, and deployment processes.
Deliverables: GitLab CI pipeline scripts.
Resources: Two DevOps engineers will collaborate on pipeline
development.

3. Phase 3: Testing and Refinement (Estimated Duration: 2 weeks)

Activities: This phase involves rigorous testing of the implemented
pipelines. We will conduct unit tests, integration tests, and user
acceptance tests to ensure the pipelines function correctly and meet
ACME-1's requirements. Based on testing results, we will refine the
pipelines to optimize performance and reliability.

Page 6 of 12



Deliverables: Test reports, refined pipeline scripts, and final
documentation.
Resources: One DevOps engineer will focus on testing and refinement.

Resource Allocation

The project requires two dedicated DevOps engineers from Docupal Demo, LLC.
GitLab Enterprise Edition will be the primary software platform, and GitLab Runner
instances will provide the necessary hardware resources.

Timeline

The total estimated duration for the GitLab CI integration is 8 weeks. The following
is a detailed timeline:

Training and Onboarding

Docupal Demo, LLC will provide comprehensive training sessions and detailed
documentation to ACME-1's team members. This will enable them to effectively
manage and maintain the integrated GitLab CI environment. Training will cover
pipeline creation, troubleshooting, and best practices for CI/CD.

Page 7 of 12



Risk Assessment and Mitigation
Strategies

Integrating GitLab CI involves several potential risks. We've outlined key areas and
mitigation strategies to ensure a smooth transition for ACME-1.

Technical Risks

Technical challenges could impact pipeline reliability. These include potential
network outages, dependency conflicts within the CI environment, and intermittent
unavailability of GitLab runners.

Mitigation: We will implement robust error handling within pipeline scripts.
This will include retry mechanisms for transient network issues. We will also
utilize dependency pinning and containerization to minimize conflicts. We
will configure multiple runners across different availability zones. This will
ensure high availability.

Operational Risks

Adoption of new CI/CD processes can face resistance. This is a normal part of
introducing change. Unclear workflows or inadequate training could slow down the
integration.

Mitigation: We will maintain open communication with ACME-1's team
throughout the integration. We will clearly demonstrate the benefits of GitLab
CI. We will implement a gradual rollout. This will allow teams to adapt at their
own pace. Comprehensive training and documentation will be provided.

Fallback and Rollback

Critical failures during deployment could disrupt ACME-1's operations.

Mitigation: We will establish well-defined rollback procedures. This includes
version control and automated rollback scripts. We will also maintain manual
deployment options as a contingency. These options will provide ACME-1 with
a safety net in case of unexpected issues.

Page 8 of 12



Benefits and Impact Analysis

Integrating GitLab CI will bring significant improvements to ACME-1's software
development lifecycle. Our analysis focuses on key performance indicators (KPIs),
delivery cycle acceleration, and qualitative team benefits.

Key Performance Improvements

We anticipate improvements across three key metrics: build success rate,
deployment frequency, and lead time for changes. GitLab CI's automated testing and
deployment will drive these gains. Specifically, a higher build success rate will
reduce wasted development effort. Increased deployment frequency allows for
faster delivery of new features and bug fixes. Shorter lead times translate to quicker
response to market demands.

The chart shows projected improvements in Build Success Rate (%), Deployment
Frequency (deployments/month), and Lead Time for Changes (days) over a 12-month
period following GitLab CI integration.

Accelerated Delivery Cycles

GitLab CI automates critical processes. Automated testing identifies bugs earlier,
reducing rework. Automated deployment streamlines releases, minimizing manual
intervention. Together, these improvements significantly accelerate delivery cycles.
This allows ACME-1 to bring products to market faster and more efficiently.

Qualitative Team Benefits

Beyond quantitative gains, GitLab CI fosters a more collaborative and efficient team
environment. Faster feedback loops enable developers to address issues promptly.
Reduced errors decrease frustration and improve code quality. Improved
collaboration arises from a shared, transparent CI/CD pipeline. These qualitative
benefits contribute to increased job satisfaction and overall team productivity.

Page 9 of 12



Cost Analysis and Budgeting

This section details the costs for integrating GitLab CI within ACME-1's existing
infrastructure. It includes upfront implementation costs and recurring operational
expenses. We will also address the expected return on investment (ROI) timeframe.

Initial Investment

The initial investment covers setup, configuration, and training to ensure ACME-1's
team can effectively use the new system. These costs are one-time expenses.

Setup and Configuration: This includes integrating GitLab CI with ACME-1's
current Git infrastructure.
Training: We will provide comprehensive training for ACME-1's development
and operations teams. This ensures proper utilization of GitLab CI's features.

Recurring Costs

Recurring costs are ongoing expenses necessary to maintain and operate the GitLab
CI environment.

GitLab License Fees: These are the costs associated with the GitLab license,
providing access to the required features.
Runner Infrastructure: This includes the cost of the infrastructure that
executes the CI/CD pipelines.

Investment vs. Alternatives

GitLab CI offers tighter integration with your current Git infrastructure than other
solutions. This reduces integration complexities and streamlines workflows.

Return on Investment

We project a return on investment (ROI) within 12 months of full implementation.
This is due to increased efficiency, reduced errors, and faster deployment cycles.

Page 10 of 12



Conclusion and Recommendations

This proposal outlines a GitLab CI integration designed to enhance ACME-1's
software development lifecycle. Successful implementation hinges on three key
factors: a properly configured CI/CD pipeline, thorough team training, and ongoing
performance monitoring.

Next Steps

We recommend scheduling a kickoff meeting that includes all relevant
stakeholders. This meeting will serve to define the detailed project requirements
and establish clear communication channels. Following the kickoff, we will begin
the integration process, focusing on a phased approach to minimize disruption and
ensure stability.

Monitoring and Optimization

Post-integration, we will closely monitor pipeline performance. This includes
tracking key metrics such as build times, failure rates, and deployment frequency.
This continuous monitoring allows for ongoing optimization and ensures that the
GitLab CI integration continues to deliver value to ACME-1.

Appendices and Supporting Materials

This section provides supplementary information to support the GitLab CI
integration proposal for ACME-1.

GitLab CI Documentation

Official GitLab CI/CD documentation provides comprehensive details about features,
configuration, and usage. It serves as a primary reference for understanding and
implementing the proposed integration.

Pipeline Configuration Templates

We include templates for common pipeline configurations. These templates offer a
starting point for ACME-1 to define their CI/CD processes.

Page 11 of 12



External Resources

Additional context can be found in the broader GitLab CI/CD documentation and
community forums. These resources offer insights from other users and developers.

GitLab CI Best Practices

Keep pipelines small and focused: Each pipeline should have a clear purpose.
Use caching: Reduce build times by caching dependencies and artifacts.
Implement security scanning: Integrate security scans into your pipelines.

Glossary of Terms

Term Definition

CI Continuous Integration

CD Continuous Delivery or Continuous Deployment

Pipeline Automated process for building, testing, and deploying code.

GitLab Runner Agent that executes the jobs in a pipeline.

.gitlab-ci.yml Configuration file that defines the CI/CD pipeline.

Reference Links

GitLab CI/CD Documentation: https://docs.gitlab.com/ee/ci/
GitLab Community Forums: https://forum.gitlab.com/

Page 12 of 12


