
Table of Contents
Executive Summary 3

Objectives 3

Expected Outcomes 3

Current State Analysis 3

Pipeline Stage Runtimes 3

Bottlenecks and Failures 4

Infrastructure and Configuration 4

Test Failure Analysis 5

Dependency Management 5

GitLab Runner Capacity 5

Versioning 5

Optimization Strategies 5

Caching Mechanisms 6

Parallel Job Configuration 6

Script and Job Optimizations 6

Docker Image Optimization 6

Dependency Management 6

Test Script Refactoring 7

Projected vs. Current Build Times 7

Technical Implementation Plan 7

.gitlab-ci.yml Configuration 7

CI Runner Scaling 8

Testing and Validation 8

Cost and Resource Impact Analysis 9

Cost Savings Analysis 9

Resource Investment 9

ROI Timeframe 10

Risk Assessment and Mitigation 10

Operational Risks 10

Mitigation Strategies 10

Rollback Procedures 11

Monitoring and Continuous Improvement 11

Key Performance Indicators (KPIs) 11

Page 1 of 13



Alerting and Feedback Loops 11

Ongoing Optimization Process 12

Visualization 12

References and Resources 13

Tools and Libraries 13

Page 2 of 13



Executive Summary

This proposal outlines a plan to optimize GitLab CI for enhanced performance and
efficiency. Docupal Demo, LLC will implement strategies to improve pipeline speed
and stability. The primary goals are to accelerate development cycles, lower
infrastructure expenses, and boost developer productivity.

Objectives

The optimization initiative targets key performance indicators (KPIs) within the
CI/CD process. We aim to reduce pipeline duration and failure rates. Improved
resource utilization and increased deployment frequency are also critical objectives.

Expected Outcomes

Successful implementation will lead to tangible improvements in development
velocity and cost-effectiveness. We project a 20% increase in development velocity.
This means faster feature delivery and quicker response to market demands. A 15%
reduction in CI/CD costs is anticipated through efficient resource management.
These savings can be reinvested in other areas of the business.

Current State Analysis

The current GitLab CI pipeline consists of three primary stages: Build, Test, and
Deploy. Our analysis reveals several areas where optimization can significantly
improve efficiency and reliability.

Pipeline Stage Runtimes

The Build stage currently takes approximately 15 minutes to complete. This duration
is primarily attributed to the time required for dependency resolution. The Test
stage, which includes various automated tests, consumes around 20 minutes.
Finally, the Deploy stage, responsible for deploying the application to the designated
environment, takes about 10 minutes. The total pipeline runtime is therefore
approximately 45 minutes.

Page 3 of 13



Bottlenecks and Failures

We have identified two major bottlenecks impacting pipeline performance: slow
build times and test failures. Slow build times are largely due to inefficient
dependency management. The pipeline frequently encounters test failures, often
attributed to flaky tests. These intermittent failures require manual intervention
and rerunning of pipelines, leading to delays and increased resource consumption.

Infrastructure and Configuration

The existing infrastructure presents limitations that affect pipeline performance.
Limited runner capacity restricts the number of concurrent pipelines that can be
executed, leading to queuing and increased wait times. Furthermore, the outdated
GitLab version in use prevents us from leveraging the latest performance
enhancements and features available in newer releases.

Test Failure Analysis

A deeper look into the Test stage reveals that a significant portion of failures are
non-deterministic, indicating flaky tests. These tests pass or fail randomly without
any code changes. This inconsistency undermines confidence in the test suite and
necessitates repeated pipeline executions. Identifying and addressing these flaky
tests is crucial for improving pipeline stability.

Page 4 of 13



Dependency Management

Inefficient dependency management contributes significantly to the slow build
times. The current process involves downloading and resolving dependencies
during each pipeline execution. This process is time-consuming and redundant.
Caching mechanisms and optimized dependency resolution strategies could
substantially reduce build times.

GitLab Runner Capacity

The limited runner capacity is a critical constraint. When multiple developers push
code concurrently, pipelines are often queued, waiting for available runners. This
queuing delays feedback loops and slows down the overall development process.
Increasing the number of runners or implementing autoscaling capabilities would
alleviate this bottleneck.

Versioning

Using an outdated GitLab version also impacts overall performance. Newer versions
of GitLab often include performance improvements, bug fixes, and new features
that can streamline CI/CD processes. Upgrading to a more recent version would
unlock these benefits and improve pipeline efficiency.

Optimization Strategies

We propose several optimization strategies to improve GitLab CI pipeline
performance. These strategies focus on caching, parallelization, resource allocation,
and script optimization.

Caching Mechanisms

We will use GitLab's caching features to reduce redundant builds. This involves
caching dependencies and build artifacts. By caching these items, we avoid re-
downloading or re-building them for each pipeline run. This saves time and
resources.

Page 5 of 13



Parallel Job Configuration

To improve efficiency, we will implement parallel testing using GitLab's matrix
feature and dynamic child pipelines. The matrix feature lets us run the same job
with different configurations in parallel. Dynamic child pipelines allow us to create
pipelines based on the changes in the current branch. This approach speeds up the
testing process.

Script and Job Optimizations

We will optimize Docker image builds to reduce their size and build time. We will
remove unnecessary dependencies to streamline the build process. Also, we will
refactor inefficient test scripts to improve their performance. This reduces overall
pipeline execution time.

Docker Image Optimization

Optimizing Docker images involves multi-stage builds. This pattern helps to
minimize the final image size by only including necessary artifacts from
intermediate build stages. We will also use smaller base images where appropriate.
This reduces the attack surface of the container.

Dependency Management

We will review and reduce project dependencies. Unnecessary dependencies
increase build times and can introduce security vulnerabilities. We will use tools to
identify unused dependencies. We will also update dependencies to their latest
versions to benefit from performance improvements and security patches.

Test Script Refactoring

Inefficient test scripts can significantly slow down pipeline execution. We will
profile the slowest tests. Then we will refactor them for better performance. This
includes optimizing database queries, reducing I/O operations, and improving
algorithm efficiency.

Page 6 of 13



Projected vs. Current Build Times

The following chart illustrates the anticipated reduction in build times after
implementing these optimization strategies.

This chart shows a significant decrease in build time. The Current Build Time is 180
minutes. The Projected Build Time is reduced to 120 minutes, thanks to the
optimization strategies.

Technical Implementation Plan

The GitLab CI optimization will proceed in a phased approach. This allows for
careful monitoring and adjustments as needed. The key areas of focus are .gitlab-
ci.yml configuration, CI runner scaling, and testing/validation.

.gitlab-ci.yml Configuration

We will modify the .gitlab-ci.yml files to enhance pipeline efficiency. This includes:

Caching: Implement caching mechanisms to reuse dependencies and build
artifacts between pipeline runs. This reduces the need to download or rebuild
the same components repeatedly.
Parallelization: Introduce parallel execution of jobs where possible. This will
decrease the overall pipeline duration by running multiple tasks concurrently.
Optimized Scripts: Review and refine existing scripts to remove inefficiencies.
This involves identifying and addressing performance bottlenecks in the build,
test, and deployment processes.

Specific changes within the .gitlab-ci.yml file will include:

1. Adding cache: directives to jobs to enable caching of dependencies and build
outputs.

2. Using parallel: directives to split jobs into parallel executions.
3. Refactoring scripts to minimize redundant operations and improve execution

speed.

Page 7 of 13



CI Runner Scaling

We will leverage GitLab's autoscaling features to dynamically adjust the number of
CI runners based on demand. This ensures that sufficient resources are available
during peak periods. It also avoids unnecessary costs during periods of low activity.

The scaling strategy involves:

1. Configuring GitLab Runner with autoscaling enabled.
2. Setting minimum and maximum runner limits based on anticipated workload.
3. Defining scaling policies based on CPU utilization and other performance

metrics.
4. Monitoring runner performance and adjusting scaling parameters as needed.

Testing and Validation

We will conduct thorough testing and validation to ensure the optimized pipelines
function correctly. We will also ensure that the changes improve performance
without introducing regressions.

The testing and validation plan includes:

1. A/B Testing: Implement A/B testing to compare the performance of the new
pipeline configurations against the existing configurations.

2. Key Performance Indicators (KPIs): Monitor key performance indicators
(KPIs) such as pipeline duration, resource utilization, and error rates.

3. Regression Testing: Perform regression testing to ensure that existing
functionality remains intact after the changes.

4. User Acceptance Testing (UAT): Conduct UAT with relevant stakeholders to
validate the optimized pipelines meet their needs.

The rollout will be gradual. We will initially deploy the changes to a subset of
projects. This allows us to assess the impact and address any issues before wider
deployment. Continuous monitoring and feedback loops will be in place throughout
the implementation process. This ensures that the optimization efforts deliver the
expected benefits.

Page 8 of 13



Cost and Resource Impact Analysis

The GitLab CI optimization will affect both costs and resource utilization. This
section details the anticipated impacts.

Cost Savings Analysis

Pipeline efficiency gains will lower cloud infrastructure expenses. Reduced runner
usage translates directly into fewer compute resources consumed. Faster
deployment times also contribute to decreased infrastructure needs. We project a
positive return on investment within six months of implementing the proposed
changes.

This chart illustrates the estimated cost savings over a 12-month period. The
savings are expected to increase significantly in the initial months.

Resource Investment

The optimization may require some resource investments. Additional runner
capacity could be needed during peak usage periods to handle increased pipeline
execution. An upgrade to the latest version of GitLab may also be necessary to
leverage the newest features and improvements.

Resource Estimated Cost (USD)

Additional Runner Capacity 500 - 1000 / month

GitLab Upgrade (One-Time) 2000 - 5000

These figures are estimates and can vary based on specific requirements and vendor
pricing.

ROI Timeframe

We anticipate a positive ROI within 6 months. This is based on the projected cost
savings from increased efficiency and reduced infrastructure usage. The initial
investment in runner capacity and the GitLab upgrade will be offset by these
savings over time. Ongoing monitoring will allow us to refine estimates and ensure
we meet the ROI target.

Page 9 of 13



Risk Assessment and Mitigation

The GitLab CI optimization process carries inherent risks that require proactive
mitigation strategies. Docupal Demo, LLC will address these risks through careful
planning and execution.

Operational Risks

Several operational risks could surface during the implementation phase. Pipeline
instability represents a primary concern. Changes to the .gitlab-ci.yml file, while
intended to improve efficiency, could inadvertently introduce errors that disrupt the
build process. We also acknowledge the potential for increased failure rates during
the rollout. New configurations, even with testing, might expose unforeseen issues
in the production environment. Finally, we must consider the risk of unexpected
resource consumption. Optimized pipelines should, ideally, reduce resource usage,
but there is a possibility that certain configurations could lead to higher CPU,
memory, or storage demands.

Mitigation Strategies

To minimize the impact of potential failures or regressions, Docupal Demo, LLC will
employ a multi-faceted approach. Thorough testing is paramount. Before deploying
any changes to the production environment, we will conduct rigorous testing in a
staging environment that mirrors the production setup. This includes unit tests,
integration tests, and end-to-end tests to identify and resolve any issues early in the
process. Gradual rollout is crucial. Instead of implementing changes across all
projects simultaneously, we will adopt a phased rollout strategy, starting with a
small subset of projects. This allows us to monitor the impact of the changes and
make adjustments as needed before widespread deployment. Comprehensive
monitoring of key metrics is essential. We will track pipeline execution time, failure
rates, resource consumption, and other relevant metrics to identify any anomalies
or regressions. This data will inform our decision-making and allow us to quickly
address any issues that arise.

Rollback Procedures

In the event of a critical failure or regression, Docupal Demo, LLC has established
rollback procedures. We maintain a version-controlled history of the .gitlab-ci.yml
configuration, which allows us to quickly revert to the previous, stable configuration

Page 10 of 13



if necessary. This ensures minimal disruption to the development workflow and
reduces the impact of any unforeseen issues.

Monitoring and Continuous
Improvement

To ensure the ongoing effectiveness of the GitLab CI optimization, we will
implement a comprehensive monitoring and continuous improvement process.
This involves tracking key metrics, establishing feedback loops, and regularly
reviewing pipeline performance.

Key Performance Indicators (KPIs)

We will continuously monitor the following KPIs to gauge the health and efficiency
of the CI pipelines:

Pipeline Duration: The total time taken for a pipeline to complete, measured in
minutes and seconds.
Failure Rate: The percentage of pipelines that result in a failure.
Resource Utilization: CPU and memory usage during pipeline execution.
Deployment Frequency: How often code is successfully deployed to different
environments.

Alerting and Feedback Loops

GitLab's built-in monitoring tools will be configured to provide alerts for critical
events. These include:

Pipeline Failures: Immediate notifications when a pipeline fails, enabling
quick investigation and resolution.
Performance Degradation: Alerts triggered when pipeline duration increases
beyond acceptable thresholds.
Resource Over-utilization: Notifications when CPU or memory usage exceeds
predefined limits.

We will establish feedback loops with the development teams to gather insights on
pipeline performance and identify areas for improvement. This will involve regular
meetings and surveys.

Page 11 of 13



Ongoing Optimization Process

The optimization process will be iterative and data-driven. The steps are outlined
below:

1. Data Collection: Continuously gather data on the KPIs mentioned above.
2. Performance Review: Regularly review pipeline performance data to identify

bottlenecks and areas for improvement.
3. Feedback Gathering: Collect feedback from developers regarding their

experience with the CI pipelines.
4. Implementation: Implement changes to the pipelines based on the data and

feedback.
5. Testing and Validation: Test the changes to ensure they have the desired

impact without introducing new issues.
6. Monitoring: Continuously monitor the performance of the updated pipelines.
7. Repeat: Repeat the process to ensure continuous improvement.

Visualization

Line charts will be used to visualize trends in pipeline duration, failure rates, and
resource utilization over time. This will enable us to quickly identify performance
regressions and the impact of implemented changes.

Grant charts can track the project progress, but date should be defined.

The monitoring and continuous improvement process will ensure that the GitLab CI
pipelines remain efficient, reliable, and aligned with the evolving needs of the
development teams.

References and Resources

This proposal references official GitLab CI/CD documentation. This includes best
practices for pipeline optimization and runner configuration guides.

Tools and Libraries

We recommend external tools to improve efficiency. Dependency caching tools such
as pipenv and poetry are useful. Static analysis tools like SonarQube are also
beneficial. These resources and tools support the proposed GitLab CI optimization

Page 12 of 13



strategies.

Page 13 of 13


