
Table of Contents
Introduction 3

Purpose 3

Scope 3

Current Performance Analysis 3

Performance Bottlenecks 3

Unoptimized Images 4

Large Bundle Sizes 4

Unnecessary Re-renders 4

Performance Metrics 4

Optimization Strategies Overview 5

Code Splitting 5

Lazy Loading 5

Component Memoization 5

Considerations 5

Code Splitting and Lazy Loading 6

Implementation Strategy 6

Expected Improvements 6

Load Time Comparison 6

Memoization and React Hooks Optimization 6

Memoization Strategies 7

React Hooks Optimization 7

Challenges and Considerations 7

State Management Improvements 8

Localized State with Context API 8

Targeted Redux Usage 8

Optimization Strategies 8

Testing and Benchmarking 9

Testing Tools and Metrics 9

Performance Quantification and Reporting 9

Success Criteria 9

Implementation Roadmap 10

Phase 1: Code Splitting 10

Phase 2: Memoization 10

Page 1 of 11



Risk Management 10

Conclusion and Recommendations 11

Post-Optimization Priorities 11

Maintaining Performance 11

Page 2 of 11



Introduction

This React Optimization Proposal is prepared by Docupal Demo, LLC, located at 23
Main St, Anytown, CA 90210, USA, for Acme, Inc ("ACME-1"), based at 3751 Illinois
Avenue, Wilsonville, Oregon, 97070, USA.

Purpose

This document outlines a plan to optimize ACME-1's customer-facing e-commerce
platform. The primary goal is to improve application responsiveness and reduce
load times, addressing current performance bottlenecks.

Scope

The scope of this proposal includes a comprehensive review of the existing React
application. We will identify areas for optimization, focusing on improving page
load times, scrolling performance, and interaction latency. Our recommendations
will include specific strategies and techniques to enhance the overall user
experience on ACME-1's e-commerce platform.

Current Performance Analysis

ACME-1's current React application performance is below industry standards. It lags
behind by approximately 30%. We used tools like Google PageSpeed Insights,
Chrome DevTools, and Web Vitals to measure this. These tools helped us identify
key areas for improvement.

Performance Bottlenecks

Our analysis revealed several bottlenecks affecting ACME-1's application
performance. These include unoptimized images, large JavaScript bundle sizes, and
unnecessary component re-renders. Each of these issues contributes to a slower
user experience. Addressing these will improve overall speed and efficiency.

Page 3 of 11



Unoptimized Images

Large, unoptimized images are slowing down page load times. These images
consume bandwidth and increase the time it takes for users to see content.
Compressing images and using modern image formats can significantly reduce
their size without sacrificing quality.

Large Bundle Sizes

The application's JavaScript bundle sizes are excessively large. This results in longer
download and parse times. Code splitting and tree shaking can help reduce bundle
sizes by removing unused code and deferring the loading of non-critical modules.

Unnecessary Re-renders

Components are re-rendering more often than necessary. This leads to wasted CPU
cycles and slower UI updates. Optimizing component rendering with techniques
like memoization and shouldComponentUpdate can minimize unnecessary re-
renders and improve performance.

Performance Metrics

The following data illustrates the current performance metrics:

Metric Value

Page Load Time 5.2 seconds

First Contentful Paint 2.8 seconds

Largest Contentful Paint 4.1 seconds

Time to Interactive 6.5 seconds

Optimization Strategies Overview

This section outlines the primary React optimization strategies to improve ACME-
1's application performance. We will focus on approaches that deliver the most
significant impact on user experience while minimizing codebase refactoring. The
key strategies include code splitting, lazy loading, and component memoization.

Page 4 of 11



Code Splitting

Code splitting divides the application's code into smaller bundles. Users download
only the code they need, reducing initial load times. We will implement code
splitting at the route level. This ensures users only download code relevant to their
current view. This approach uses React's lazy and Suspense components.

Lazy Loading

Lazy loading defers the loading of resources until they are needed. We will apply
lazy loading to images and other non-critical components. This technique reduces
the initial page load time. It improves the perceived performance of the application.
We will use React's built-in lazy loading capabilities.

Component Memoization

Component memoization prevents unnecessary re-renders. We will use
React.memo and useMemo to memoize components. This is based on their props or
computed values. Memoization can significantly improve performance in complex
components. Over-memoization can add overhead, so we will apply it judiciously.
We will carefully analyze component render behavior before applying memoization.

Considerations

These optimization strategies require careful consideration of potential trade-offs.
Code splitting introduces complexity to the build process. Component memoization
carries the risk of over-optimization. We will monitor and profile the application.
This ensures these techniques deliver the desired performance improvements
without unintended consequences.

Code Splitting and Lazy Loading

Code splitting and lazy loading are key techniques to improve ACME-1 application
performance. They reduce the amount of code initially loaded, speeding up the
initial load time.

Page 5 of 11



Implementation Strategy

We will implement code splitting in ACME-1 app by dividing the application into
smaller chunks. These chunks will load on demand. We will focus on splitting these
areas:

Product listings
Image galleries
Non-critical sections

We will use React.lazy and Loadable Components to achieve this. These tools make
it easier to define components that load only when needed.

Expected Improvements

Implementing code splitting and lazy loading is expected to reduce initial load
times by approximately 40%. The optimized application will provide a faster and
more responsive experience for users.

Load Time Comparison

Initial load times should decrease noticeably after implementing these
optimizations. The area chart below visualizes estimated load time improvements.

Memoization and React Hooks
Optimization

This section details how memoization techniques and React hooks can significantly
improve ACME-1's application performance by reducing unnecessary re-renders. We
will focus on strategies for optimizing key components using these methods.

Memoization Strategies

Memoization is a powerful optimization technique that prevents re-renders when a
component's props haven't changed. We'll employ React.memo for functional
components, which performs a shallow comparison of props. This will be applied to
components such as product cards, filter components, and the header navigation, as

Page 6 of 11



these are frequently re-rendered even when their underlying data remains the same.
By memoizing these components, we ensure they only update when necessary,
leading to noticeable performance gains.

React Hooks Optimization

React hooks like useMemo and useCallback are crucial for optimizing function
components. useMemo memoizes the result of a calculation, preventing expensive
computations on every render. We'll use it to memoize derived data within
components, ensuring calculations are only performed when dependencies change.
useCallback memoizes functions themselves, which is essential when passing
callbacks as props to optimized child components. This ensures that the child
components only re-render when the callback function actually changes, not on
every parent render.

For example, within filter components, useCallback can be used to memoize event
handlers that update the filter criteria. This prevents unnecessary re-renders of
child components that rely on these handlers. Similarly, useMemo can be used to
memoize the filtered list of products, ensuring that the list is only re-calculated
when the filter criteria change.

Challenges and Considerations

While memoization and hooks offer significant performance benefits, they also
introduce complexities. Managing dependency arrays correctly within useMemo
and useCallback is critical. Incorrect dependencies can lead to either missed updates
or unnecessary re-renders, negating the benefits of optimization. Additionally,
overusing memoization can increase code complexity and potentially introduce
performance overhead due to the shallow prop comparisons. We will carefully
profile and benchmark our changes to ensure that these optimizations are indeed
providing a net performance benefit.

State Management Improvements

ACME-1 currently uses Redux for state management. This approach, while robust,
contributes to unnecessary re-renders due to frequent state updates across the
application. We propose a refined strategy that leverages both Context API and
Redux to optimize performance.

Page 7 of 11



Localized State with Context API

For state that is localized to specific components or sections of the application, we
recommend using React's Context API. This reduces the reliance on Redux for every
state update, minimizing re-renders in unrelated parts of the application. Context
API is suitable for themes, user preferences, or UI state specific to a component tree.

Targeted Redux Usage

Redux should be reserved for global application state that truly needs to be accessed
and modified by many components. By limiting Redux usage to essential global
state, we reduce the number of components subscribing to the Redux store, leading
to fewer re-renders when that state changes.

Optimization Strategies

To further mitigate re-renders, we suggest implementing the following strategies:

Memoization: Utilize React.memo for functional components and
PureComponent for class components to prevent re-renders when props
haven't changed.
Selectors: Employ Redux selectors (e.g., using reselect) to derive specific pieces
of state from the Redux store. This ensures that components only re-render
when the specific data they depend on has changed, rather than on any state
change in the Redux store.
Batching Updates: Explore batching state updates to minimize the number of
re-renders triggered by multiple state changes within a short period. This can
be achieved using ReactDOM.unstable_batchedUpdates or similar techniques.

By strategically combining Context API with focused Redux usage and
implementing optimization techniques, ACME-1 can significantly improve the
performance and scalability of the React application.

Testing and Benchmarking

We will rigorously test and benchmark all implemented optimizations to ensure
effectiveness and stability within ACME-1's React application. Our testing strategy
employs industry-standard tools and methodologies.

Page 8 of 11



Testing Tools and Metrics

We will use Jest and React Testing Library for comprehensive unit and integration
testing. These tools enable us to isolate components and simulate user interactions.
Performance profiling will identify bottlenecks and measure the impact of our
optimizations. We will track key performance indicators (KPIs).

Performance Quantification and Reporting

We will quantify performance improvements using Web Vitals. These metrics offer
insights into user experience and application efficiency. We will provide ACME-1
with quantifiable performance reports. These reports will detail the impact of each
optimization on metrics. We plan to present the data in clear, understandable
formats, including tables and charts. For example, we can show page load time
improvements using a bar chart:

This visual representation clearly shows the reduction in page load time after
optimization.

Success Criteria

The success of this optimization effort will be measured against two primary
criteria:

Page Speed Increase: A minimum of 50% increase in page speed. This will be
measured by comparing page load times before and after optimization.

Bounce Rate Reduction: A 25% reduction in bounce rate. This indicates
improved user engagement and satisfaction.

Implementation Roadmap

We propose a phased approach to optimize ACME-1's React application. This
strategy minimizes disruption and allows for thorough testing at each stage. John
Smith (Lead Developer) and Jane Doe (Front-end Engineer) will be responsible for
the implementation.

Page 9 of 11



Phase 1: Code Splitting

Duration: 2 weeks
Description: We will implement code splitting to reduce the initial load time.
This involves identifying areas of the application that can be loaded on
demand. We'll leverage React.lazy and Suspense components.
Deliverables: Implementation of route-based code splitting. Reduced initial
bundle size verified through Webpack Bundle Analyzer.

Phase 2: Memoization

Duration: 3 weeks
Description: This phase focuses on implementing memoization techniques to
prevent unnecessary re-renders. We'll use React.memo for functional
components and useMemo & useCallback hooks.
Deliverables: Optimized components using memoization techniques.
Performance improvements measured using React Profiler.

Risk Management

We will actively manage risks through the following measures:

Regular Code Reviews: Ensure code quality and identify potential issues early.
Performance Monitoring: Track key performance indicators (KPIs)
throughout the implementation process.
A/B Testing: Compare the performance of optimized components against the
original versions.

Conclusion and Recommendations

This React optimization proposal outlines strategies to improve ACME-1's
application performance. We anticipate significant improvements in several key
areas. Faster load times will enhance the user experience. This, in turn, should boost
user engagement. Ultimately, ACME-1 should see increased conversion rates.

Page 10 of 11



Post-Optimization Priorities

Following the core optimization work, we recommend focusing on two key areas.
Image optimization will further reduce load times. Server-side rendering (SSR) will
improve initial page load speed and SEO.

Maintaining Performance

To ensure continued optimal performance, we propose two ongoing activities. We
will implement continuous performance monitoring to quickly identify any
regressions. Regular performance audits will proactively identify and address
potential bottlenecks. This combination of monitoring and audits will keep ACME-
1's application running smoothly.

Page 11 of 11


