
Table of Contents
Introduction 3

Objectives and Drivers 3

Scope and Strategy 3

Current System Assessment 3

Key Characteristics 4

Challenges and Limitations 4

Module Complexity 4

Impact of Limitations 4

Migration Strategy and Approach 4

Incremental Migration with ngUpgrade 5

Tools and Frameworks 5

Phased Migration Timeline 6

Technical Feasibility and Risk Analysis 6

Feasibility Assessment 6

Risk Identification and Mitigation 6

Risk Matrix 7

Impact on Performance and Scalability 7

Performance Enhancements 7

Scalability Improvements 8

Testing and Quality Assurance 8

Test Coverage 8

Testing Tools and Frameworks 8

Testing Process 8

Deployment and Rollout Plan 9

Deployment Process 9

Rollback Strategy 9

Environment Setup 10

Deployment Schedule 10

Cost and Resource Estimation 11

Budget Considerations 11

Team Roles and Skills 11

Conclusion and Recommendations 12

Migration Strategy 12

Page 1 of 12



Timeline 12

Follow-Up Activities 12

Page 2 of 12



Introduction

Docupal Demo, LLC presents this Angular Migration Proposal to Acme, Inc. This
document outlines our recommended approach for migrating your existing
AngularJS 1.5 application to the latest Angular version. Our proposal addresses key
objectives and drivers for this upgrade, providing a clear path toward a modern,
maintainable, and high-performing application.

Objectives and Drivers

This migration aims to enhance your application's performance. We will address
current performance bottlenecks. Upgrading also ensures long-term
maintainability. The end-of-life support for AngularJS 1.5 necessitates this move. A
modern Angular platform will improve developer recruitment and retention. Finally,
leveraging modern Angular features will be a priority.

Scope and Strategy

This proposal details our strategy for a seamless transition. It covers legacy code
handling and tool/framework integration. Our approach includes rigorous testing
and streamlined deployment. Clear team roles and responsibilities are defined. We
provide estimated timelines and budget considerations. Our final recommendations
ensure a successful migration.

Current System Assessment

ACME-1's current system relies on AngularJS 1.5, following the Model-View-
Controller (MVC) architectural pattern. The primary technologies in use are
JavaScript and jQuery.

Key Characteristics

Architecture: MVC-based, providing a structured approach to application
development.
Technology Stack: JavaScript and jQuery form the foundation of the front-end.

Page 3 of 12



Challenges and Limitations

The existing system presents several challenges that impact ACME-1's ability to
scale and maintain its application effectively.

Performance Bottlenecks: The current implementation suffers from
performance issues, hindering user experience and overall efficiency.
Scalability Constraints: Limited scalability restricts the system's capacity to
handle increasing user loads and data volumes.
Maintenance Difficulties: Maintaining the application has become
increasingly complex due to its architecture and outdated technology stack.
Complex Directives: Certain directives within the application are overly
complex, making them difficult to understand and modify.
Tightly Coupled Controllers: The tight coupling between controllers creates
dependencies that complicate code changes and testing.

Module Complexity

The following chart illustrates the complexity and usage of key modules within the
existing system:

Impact of Limitations

These limitations collectively contribute to:

Increased development costs due to the complexity of making changes and
fixing bugs.
Reduced agility in responding to changing business requirements.
Higher risk of introducing errors during maintenance activities.
Suboptimal user experience due to performance issues.

Migration Strategy and Approach

We propose an incremental migration strategy, sometimes called the Strangler Fig
pattern, for migrating ACME-1 from AngularJS 1.5 to the latest version of Angular.
This approach allows for a gradual transition, minimizing disruption to existing
functionality and reducing risk.

Page 4 of 12



Incremental Migration with ngUpgrade

Our approach leverages ngUpgrade to enable the coexistence of AngularJS and
Angular components within the ACME-1 application. This means we can
progressively rewrite AngularJS components as Angular components while
maintaining the application's overall functionality.

1. Establish a Hybrid Environment: We will configure ngUpgrade to allow
seamless communication between AngularJS and Angular components. This
involves setting up the necessary bootstrapping and dependency injection
mechanisms.

2. Component-by-Component Migration: We will identify suitable AngularJS
components for migration based on factors like complexity, dependencies, and
business priority. Each selected component will be rewritten in Angular.

3. Coexistence and Integration: The new Angular components will coexist with
the existing AngularJS components, utilizing ngUpgrade to handle data
binding and event handling between the two frameworks.

4. Iterative Rollout: Migrated components will be deployed and tested
incrementally, allowing for continuous feedback and refinement.

5. AngularJS Deprecation: As more components are migrated to Angular, the
AngularJS footprint will gradually decrease until it is eventually removed
entirely.

Tools and Frameworks

Several tools and frameworks will be essential to the migration process:

Angular CLI: The Angular CLI will be used for scaffolding new Angular
components, managing dependencies, and building the application.
ngUpgrade: As previously mentioned, ngUpgrade will facilitate the coexistence
of AngularJS and Angular components.
TypeScript: TypeScript will be the primary language for developing Angular
components, providing strong typing and improved code maintainability.

Phased Migration Timeline

The following chart illustrates the phased timeline for the migration process.

Page 5 of 12



Technical Feasibility and Risk Analysis

The proposed Angular migration presents both opportunities and challenges. We
have carefully assessed the technical feasibility of migrating ACME-1 from
AngularJS 1.5 to the latest Angular version. The assessment considers potential risks
and mitigation strategies to ensure a smooth transition.

Feasibility Assessment

The migration is technically feasible. Our team possesses the expertise in both
AngularJS and Angular. This includes experience with hybrid applications and
incremental upgrades. We will leverage tools and frameworks designed to ease the
transition, such as ngUpgrade. This will allow running AngularJS and Angular
components side-by-side during the migration. A phased approach will minimize
disruption and allow continuous testing.

Risk Identification and Mitigation

Several risks have been identified.

Compatibility Issues: Differences between AngularJS and Angular could cause
compatibility problems. We will use shims and polyfills to bridge these gaps.
Thorough testing of upgraded components will be conducted to ensure proper
functionality.
State Management Complexities: Managing application state during the
migration can be complex. We will implement a robust state management
solution, potentially using NgRx or a similar library, to maintain consistency.
Code Complexity: The existing AngularJS codebase might contain complex
logic. This could pose challenges during the migration. We will refactor code in
manageable chunks, focusing on testability and maintainability.

A rollback plan is in place. Should critical issues arise, the application can be
reverted to the previous AngularJS version. This ensures business continuity.

Page 6 of 12



Risk Matrix

Risk Probability Impact Mitigation Strategy

Compatibility
Issues

Medium High Shims, polyfills, and thorough testing.

State
Management

Medium Medium
Implement robust state management
(NgRx).

Code Complexity Low Medium
Refactor code in small increments with a
focus on testability.

Third-Party
Library Issues

Low Medium
Research and test compatible versions;
identify and implement alternatives if
necessary.

Impact on Performance and Scalability

The Angular migration will positively influence application performance and
scalability. We anticipate optimized load times as individual components transition
to Angular. This is because Angular's architecture is more efficient than AngularJS
1.5.

Performance Enhancements

The migration to Angular brings significant architectural improvements. Angular’s
optimized rendering pipeline and change detection mechanisms contribute to faster
load times. As components are migrated, users should notice a quicker, more
responsive experience. We expect decreased initial load times and more efficient
handling of data updates.

During the coexistence phase, there might be a slight initial performance overhead.
This is due to needing both AngularJS and Angular frameworks running
simultaneously. However, this is temporary. Once the migration is complete, the
application should perform significantly better than before.

Page 7 of 12



Scalability Improvements

Angular's modern design promotes better scalability. Its modular structure and
component-based architecture simplify the addition of new features. These
improvements make it easier to manage and scale the application as ACME-1’s needs
evolve. Angular also offers improved support for server-side rendering. This will
lead to faster initial page loads and enhanced SEO.

Testing and Quality Assurance

A comprehensive testing strategy is vital for a smooth Angular migration. We will
use a multi-faceted approach, incorporating unit, integration, and end-to-end tests.
This will ensure each component, service, and module functions correctly, both
independently and together.

Test Coverage

Our goal is to achieve a minimum of 80% test coverage using automated tests. This
high level of coverage helps catch regressions early and guarantees the stability of
the migrated application. We will track test coverage metrics throughout the
migration to make sure that we meet our goal.

Testing Tools and Frameworks

We will leverage industry-standard testing tools and frameworks. These include:

Karma: A test runner that provides a testing environment.
Jasmine: A behavior-driven development framework for writing test suites.
Protractor: An end-to-end testing framework for Angular applications.
Protractor simulates user interactions to test the application's functionality
from the user's perspective.

Testing Process

The testing process will involve the following steps:

1. Unit Testing: Testing individual components and services in isolation to verify
their functionality.

Page 8 of 12



2. Integration Testing: Testing the interactions between different components
and modules to ensure they work together seamlessly.

3. End-to-End Testing: Testing the entire application flow from start to finish to
validate the user experience and overall functionality.

4. Regression Testing: After each migration phase, we will conduct regression
testing to make sure that existing functionality remains intact.

5. Continuous Integration: We will integrate testing into our continuous
integration pipeline. This means that tests will be run automatically whenever
code is committed, providing quick feedback and catching errors early.

By following this testing strategy, we can minimize risks and deliver a high-quality
Angular application.

Deployment and Rollout Plan

The deployment and rollout of the migrated Angular application will follow a
structured approach. This ensures minimal disruption and a smooth transition. We
will use a phased deployment strategy to mitigate risks and allow for continuous
monitoring and validation.

Deployment Process

We will leverage CI/CD pipelines for automated build and deployment processes.
This includes automated testing at each stage. Our process includes building the
application, running unit and integration tests, and deploying to the appropriate
environment. Each deployment will be carefully monitored for performance and
stability.

Rollback Strategy

In the event of a failed deployment or critical issues, we will implement automated
rollback scripts. These scripts will revert the application to the last stable version.
We will also maintain regular database backups to ensure data integrity. A detailed
rollback plan will be documented and readily available to the deployment team.

Environment Setup

We will establish three distinct environments: development, staging, and
production.

Page 9 of 12



Development: This environment is for active development and testing of new
features.
Staging: This environment mirrors the production environment. It will be
used for final testing and user acceptance testing (UAT) before deployment to
production.
Production: This is the live environment where the application is accessible to
end-users.

Each environment will have its own dedicated infrastructure and configuration.
This separation ensures that changes in the development or staging environments
do not impact the production environment.

Deployment Schedule

Cost and Resource Estimation

The Angular migration project is estimated to take approximately 6 months. This
timeline accounts for a phased approach, addressing legacy code compatibility and
thorough testing at each stage.

Page 10 of 12



Budget Considerations

The overall budget will encompass development, testing, training, and potential
infrastructure enhancements. We anticipate costs related to specialized tools and
frameworks that streamline the migration process. A detailed breakdown of these
costs will be provided separately.

Team Roles and Skills

Successful migration requires a dedicated team with diverse expertise. This includes
experienced Angular developers responsible for the core migration tasks. AngularJS
experts will be crucial for understanding and adapting legacy components. QA
engineers will ensure application quality throughout the process. Finally, DevOps
specialists will manage deployment and infrastructure aspects.

Role Quantity
Estimated Hourly

Rate (USD)
Estimated

Hours
Total Cost

(USD)

Angular
Developer

2 100 960 192,000

AngularJS Expert 1 120 480 57,600

QA Engineer 1 80 640 51,200

DevOps Specialist 1 110 320 35,200

Subtotal 336,000

Project
Management

150 160 24,000

Total Estimated
Cost

360,000

Note: These are preliminary estimates and may be refined following a detailed
assessment.

Conclusion and Recommendations

This proposal outlines a comprehensive strategy for migrating Acme, Inc's
AngularJS 1.5 application to the latest Angular version. The migration aims to
modernize the application, improve performance, and ensure long-term

Page 11 of 12



maintainability.

Migration Strategy

We recommend an incremental migration strategy. This approach minimizes
disruption and allows for continuous delivery of value. We advise prioritizing
critical components during the initial phases to quickly realize the benefits of the
new Angular framework.

Timeline

The suggested migration timeline includes:

Phase 1: Setup and Tooling (1 month)
Phase 2: Core Components Migration (3 months)
Phase 3: Feature Modules Migration (2 months)

This timeline is an estimate and will be refined as the project progresses.

Follow-Up Activities

Essential follow-up activities include code reviews to maintain code quality.
Performance monitoring is needed to ensure the migrated application performs
optimally. Ongoing maintenance will be necessary to address any issues and keep
the application up-to-date.

Page 12 of 12


