
Table of Contents
Introduction and Background 3

Project Context 3

Need for Upgrade 3

Upgrade Rationale and Objectives 4

Enhanced Performance 4

Improved Security 4

New Features and Capabilities 4

Impact Assessment and Compatibility Analysis 4

Codebase Compatibility 5

Dependency Compatibility 5

Infrastructure Compatibility 5

Compatibility Matrix 5

Risk Assessment and Mitigation Strategies 6

Potential Risks 6

Mitigation Strategies 6

Upgrade Plan and Timeline 7

Step-by-Step Upgrade Approach 7

Coordination and Communication 8

Project Timeline 8

Testing and Validation Strategy 8

Test Environment 9

Test Suites 9

Validation Procedures 9

Performance and Security 9

Dependency and Resource Management 10

Dependency Management 10

Resource Allocation 10

Cost Estimation and Budget Considerations 10

Direct Costs 11

Indirect Costs 11

Budget Allocation 11

Cost Overrun Management 11

Conclusion and Recommendations 12

Page 1 of 12

Project Summary 12

Recommendations 12

Phased Approach 12

Post-Upgrade Support 12

Page 2 of 12

Introduction and Background

This proposal from Docupal Demo, LLC outlines the necessary steps to update
ACME-1's Django web application. ACME-1 currently utilizes Django version 2.2
within an Amazon Web Services (AWS) EC2 instance environment, with a
PostgreSQL database.

Project Context

ACME-1's current Django 2.2 installation has served its purpose. However, Django
2.2 reached its end-of-life. Continuing to operate on this version exposes ACME-1 to
potential security vulnerabilities. Newer Django releases offer improved
performance. They also provide access to new features.

Need for Upgrade

This upgrade proposal addresses several key factors:

Security: Maintaining a secure web application is critical. Upgrading to a
supported Django version ensures access to the latest security patches and
mitigations.
Performance: Newer Django versions include performance enhancements that
can improve website speed and efficiency.
New Features: Upgrading unlocks access to new Django features and
capabilities. These features can help ACME-1 improve its website and user
experience.
Compliance: Upgrading ensures compliance with the latest web standards and
best practices.

This proposal details our approach to upgrading ACME-1's Django application. It will
outline the process, timeline, and associated costs. The upgrade will result in a more
secure, performant, and modern web application for ACME-1.

Page 3 of 12

Upgrade Rationale and Objectives

This document outlines the rationale and objectives for upgrading ACME-1's Django
framework to version 4.2. Our assessment indicates that upgrading will provide
substantial benefits in terms of performance, security, and access to new features.

Enhanced Performance

Django 4.2 offers significant improvements to the Object-Relational Mapper (ORM).
These enhancements will lead to faster database queries and reduced server load for
ACME-1's applications. We expect a measurable improvement in application
responsiveness, creating a better user experience.

Improved Security

Maintaining an up-to-date framework is crucial for security. Django 4.2 includes the
latest security patches and best practices. Upgrading minimizes ACME-1's exposure
to potential vulnerabilities and ensures compliance with security standards.

New Features and Capabilities

Django 4.2 introduces new features in the template engine, simplifying
development and increasing efficiency. These new capabilities will enable ACME-1's
developers to build more robust and feature-rich applications with less effort. By
leveraging the latest features, ACME-1 can stay competitive and innovative.

The upgrade to Django 4.2 directly supports ACME-1's project goals by providing a
more secure and performant platform for its applications. This ensures compliance
with current software standards, reducing risk and improving overall system
reliability.

Impact Assessment and Compatibility
Analysis

The Django upgrade may affect ACME-1's existing codebase. We have identified
areas requiring careful review and potential modification. Our assessment focuses
on compatibility with the current setup, dependencies, and infrastructure.

Page 4 of 12

Codebase Compatibility

The upgrade requires addressing the use of deprecated features. Specifically,
django.utils.decorators.contextmanager is deprecated and needs migration to its
recommended replacement. A thorough code review will identify all instances of
this and ensure smooth transition.

Dependency Compatibility

Several key dependencies need evaluation for compatibility with the target Django
version. These include:

django-rest-framework: We will verify the installed version's compatibility. If
needed, we will upgrade it to a compatible release.
django-allauth: Similar to django-rest-framework, we will assess and upgrade
django-allauth to ensure seamless integration.
Celery: Celery's compatibility with the new Django version is crucial. We will
test and upgrade Celery and its related components (e.g., broker, backend) as
required.

Infrastructure Compatibility

The upgrade may necessitate changes to the underlying infrastructure. There is a
potential need to upgrade the PostgreSQL database server to a version fully
supported by the target Django release. We will assess the current PostgreSQL
version and plan accordingly.

Compatibility Matrix

Component
Current
Version

Status Mitigation Strategy

Django (assumed) Upgrade Follow Django's upgrade guide

django-rest-
framework

(assumed) Check Upgrade if necessary, test after upgrade

django-allauth (assumed) Check
Upgrade if necessary, test authentication
flows

Celery (assumed) Check Upgrade if necessary, test task execution

Page 5 of 12

Component
Current
Version

Status Mitigation Strategy

PostgreSQL (assumed) Check
Upgrade if necessary, ensure data
migration support

Deprecated
Features

Present Migrate
Replace
django.utils.decorators.contextmanager

This matrix outlines the key components, their current status, and the planned
mitigation strategies for ensuring compatibility during the Django upgrade process.

Risk Assessment and Mitigation
Strategies

This section outlines potential risks associated with the Django upgrade and the
strategies to mitigate them. Our goal is to minimize downtime and prevent data loss
during the upgrade process.

Potential Risks

The primary risks during the Django upgrade include:

Data Loss: Database corruption or errors during migration could lead to data
loss.
Application Downtime: The application may be unavailable during the
upgrade and deployment process.
Incompatibility Issues: The upgraded Django version might be incompatible
with existing third-party packages or custom code.

Mitigation Strategies

To address these risks, we will implement the following mitigation strategies:

Comprehensive Backup Plan:

A full backup of the database will be performed before initiating the
upgrade.
The code repository will be backed up to ensure a point of restoration.

Page 6 of 12

A detailed rollback plan will be prepared to revert to the previous version
if needed.

Thorough Testing: A staged testing approach will be adopted:

Unit Tests: Verify individual components function correctly after the
upgrade.
Integration Tests: Ensure seamless interaction between different parts of
the application.
User Acceptance Testing (UAT): Allow key users to test the upgraded
application in a staging environment.

Staged Deployment: The upgrade will be deployed to a staging environment
that replicates the production environment. After successful testing, the
upgrade will be rolled out to production during a scheduled maintenance
window. This minimizes the impact of unforeseen issues.

These strategies will minimize disruptions and ensure a smooth and safe upgrade
process.

Upgrade Plan and Timeline

Our upgrade plan ensures a smooth transition for ACME-1's Django application. We
will follow a structured approach, focusing on minimizing downtime and ensuring
data integrity. The project is estimated to take 8 weeks.

Step-by-Step Upgrade Approach

1. Development Environment Setup: We will create an isolated development
environment mirroring the production setup. This prevents disruptions during
the upgrade process.

2. Dependency Updates: We will update Django and its dependencies to the
target versions. We will carefully manage compatibility issues.

3. Code Migration: The existing codebase will be migrated to be compatible with
the new Django version. This includes addressing deprecated features.

4. Testing: Rigorous testing will be conducted. This includes unit, integration,
and regression tests to ensure all functionalities work correctly.

5. Staging: Before deploying to production, the upgraded application will be
deployed to a staging environment. This allows for final testing.

Page 7 of 12

6. Deployment: The upgraded application will be deployed to the production
environment. We will closely monitor performance.

Coordination and Communication

Our team will coordinate using daily stand-up meetings. We will also conduct
weekly progress reviews. A dedicated communication channel will be established.
This will ensure quick responses to any questions or concerns.

Project Timeline

The following Gantt chart illustrates the project milestones and timeline.

Testing and Validation Strategy

Our testing and validation strategy ensures a smooth and reliable Django upgrade
for ACME-1. We will use a multi-stage approach, covering development, staging, and
production environments.

Page 8 of 12

Test Environment

We will conduct tests across three environments:

Development: Initial testing and debugging.
Staging: A production-like environment for comprehensive testing.
Production: Final verification after the upgrade.

Test Suites

All existing test suites will be updated to align with the upgraded Django version.
Additionally, we will create new integration tests specifically for the updated
features and functionalities.

Validation Procedures

We will perform the following validation procedures:

Unit Tests: Verify individual components function correctly.
Integration Tests: Confirm that different parts of the application work
together seamlessly.
User Acceptance Tests (UAT): Allow ACME-1 users to test the system and
provide feedback.

Performance and Security

To validate performance and security post-upgrade, we will execute:

Load Testing: Assess the application's ability to handle expected traffic.
Penetration Testing: Identify and address potential security vulnerabilities.
Code Audits: Review the codebase for security best practices and potential
issues.

Dependency and Resource Management

This section outlines the management of project dependencies and resource
allocation required for the Django upgrade.

Page 9 of 12

Dependency Management

The upgrade necessitates a thorough review and update of key third-party
packages. These include:

django-rest-framework
django-allauth
Celery
Their respective dependencies

Each package will be assessed for compatibility with the target Django version.
Where necessary, packages will be updated to compatible versions or replaced with
suitable alternatives. We will manage version conflicts and ensure smooth
integration with the upgraded Django core.

Resource Allocation

Successful execution requires careful resource planning, encompassing personnel
and infrastructure. The following team roles are essential:

Project Manager: To oversee project timelines and coordinate resources.
Senior Django Developer: To execute the upgrade and resolve technical issues.
DevOps Engineer: To manage infrastructure and deployment.
QA Tester: To validate the upgraded application's functionality and
performance.

Infrastructure considerations include potential increases in CPU and memory
requirements for the upgraded application. We will monitor resource utilization
during testing and adjust allocations as needed to maintain optimal performance.

Cost Estimation and Budget
Considerations

This section outlines the estimated costs for the Django update/upgrade project for
ACME-1. The budget considers both direct and indirect expenses.

Page 10 of 12

Direct Costs

Direct costs primarily consist of developer hours required for the upgrade process.
This includes code migration, testing, and debugging. We will also use testing tools
to ensure application stability.

Indirect Costs

Indirect costs encompass potential downtime during the upgrade and any
necessary training for ACME-1 staff on the updated Django version. Downtime will
be minimized through careful planning and execution.

Budget Allocation

The total budget allocated for this project is $20,000. A detailed breakdown of
estimated costs is shown below:

Item Estimated Cost (USD)

Developer Hours $14,000

Testing Tools $1,000

Downtime Contingency $2,500

Training $1,500

Total Estimated Cost $19,000

Cost Overrun Management

We have built a contingency into our budget. Any expenses exceeding 10% of the
total estimated cost ($19,000) will require prior approval from ACME-1. We will
communicate proactively regarding potential budget adjustments.

Page 11 of 12

Conclusion and Recommendations

Project Summary

This proposal outlines a plan to update or upgrade ACME-1's Django framework. Our
assessment indicates that upgrading will lead to improved performance. It will also
enhance the security of your applications. You will also gain access to the latest
Django features.

Recommendations

Phased Approach

We advise a phased approach to the upgrade. This minimizes risks and ensures a
smooth transition. We recommend starting the project within the next month.

Post-Upgrade Support

Docupal Demo, LLC can provide ongoing support post-upgrade. This includes
security patches, bug fixes, and feature enhancements. These services will ensure
your Django applications remain stable and secure.

Page 12 of 12

