
Table of Contents
Introduction and Objectives 3

Introduction 3

Objectives 3

Current Database and Application State Analysis 3

Database Schema Overview 4

Application Context 4

Current Challenges 4

Proposed Migration Strategy 5

Schema Evolution 5

Data Migration and Integrity 5

Stepwise Migration Plan 6

Downtime Management 6

Rollback Strategy 6

Impact Assessment and Risk Analysis 7

Functional Impact 7

Performance Implications 7

Risk Mitigation 8

Risk Severity Levels 8

Testing and Validation Plan 8

Testing Environments 9

Test Cases 9

Testing Procedures 9

Rollback Validation 9

Deployment and Rollout Plan 10

Deployment Schedule 10

Deployment Steps 10

Rollback Procedure 11

Monitoring 11

Resource and Timeline Estimation 11

Appendices and References 12

Appendix A: Supplementary Materials 12

Appendix B: References 12

Page 1 of 11



Introduction and Objectives

Introduction

DocuPal Demo, LLC presents this Django migration proposal to Acme, Inc (ACME-1).
This document details our approach to migrating key ACME-1 applications to a
more robust and scalable Django framework. Our goal is to enhance ACME-1's
platform to better serve its growing user base and evolving business needs.

Objectives

This migration project focuses on three core objectives: improving performance,
reducing redundancy, and strengthening security.

Enhanced Scalability: The primary driver for this migration is to enhance the
scalability of ACME-1's infrastructure. This will ensure the platform can handle
increased user traffic and data volume efficiently.
Affected Components: The migration will affect ACME-1's user profiles,
content management system (CMS), and e-commerce platform.
Expected Benefits: We expect improved query performance across these
applications, leading to faster response times and a better user experience. The
migration also aims to reduce data redundancy, streamlining data
management and storage. Finally, it will enhance data security measures to
protect sensitive user information and business data.

Current Database and Application State
Analysis

ACME-1's current Django application relies on a PostgreSQL database. The database
houses critical business data, including customer information, order history,
product catalogs, and financial records.

Database Schema Overview

The existing database schema comprises several key tables:

Page 2 of 11



customers: Stores customer profiles, addresses, and contact details.
orders: Tracks order placements, status, and associated customer IDs.
products: Contains product details, pricing, and inventory levels.
payments: Records payment transactions and related order information.

These tables are interconnected through foreign key relationships, ensuring data
integrity and enabling efficient data retrieval. The current database size is
approximately 50 GB, with the orders table being the largest, accounting for roughly
30% of the total size.

Application Context

ACME-1's Django application is a monolithic architecture. It handles various
functionalities, including:

Customer relationship management (CRM)
Order processing and fulfillment
Inventory management
Financial reporting

The application uses Django version 3.2 and Python 3.8. It is deployed on a cluster of
virtual machines running Ubuntu 20.04. The application currently serves around
10,000 active users daily, with peak usage occurring between 10:00 AM and 2:00 PM
EST. During peak hours, the application handles approximately 500 requests per
second. The average response time for API requests is 200ms. The application's
codebase consists of approximately 200,000 lines of code. The database server is
currently running PostgreSQL version 12.

Current Challenges

ACME-1 faces challenges with the current setup: slow query performance on large
tables, limited scalability to handle increasing user traffic, and difficulties in
maintaining the monolithic codebase. The Django migration aims to address these
challenges by optimizing the database schema, upgrading Django and Python
versions, and potentially refactoring parts of the application.

Page 3 of 11



Proposed Migration Strategy

Docupal Demo, LLC will use a phased approach to migrate ACME-1's Django
application. This strategy focuses on minimizing disruption, preserving data
integrity, and providing a clear rollback plan.

Schema Evolution

The database schema will be updated in a controlled manner. We will implement the
following changes:

User Profiles: New fields will be added to enhance user data.
Product Categories: Product categories will be normalized for better data
management.
Content Tagging: Foreign keys will be introduced to support efficient content
tagging.

These changes will be implemented using Django's migration framework.

Data Migration and Integrity

Data integrity is paramount. We will use Django's data migrations to transform
existing data to fit the new schema. This involves:

1. Extracting: Selecting the necessary data from the existing models.
2. Transforming: Modifying the data to match the new schema requirements.
3. Loading: Inserting the transformed data into the new models.
4. Validating: Applying checks to ensure data accuracy and completeness after

migration.

The RunPython operation within Django migrations will execute custom data
transformation scripts. We will use schemaeditor to apply schema changes. Each
migration will include validation steps to guarantee data accuracy.

Stepwise Migration Plan

The migration process will consist of these steps:

1. Backup: Perform a full database backup before starting the migration.

Page 4 of 11



2. Development Environment: Apply migrations and test data transformations
in a development environment.

3. Staging Environment: Migrate a copy of the production data to a staging
environment for final testing.

4. Production Migration: Execute the migrations on the production database
during a scheduled maintenance window.

5. Verification: Thoroughly verify the application's functionality and data
integrity post-migration.

Downtime Management

We aim to minimize downtime during the production migration. We will achieve
this through:

Careful planning and optimization of data migration scripts.
Using appropriate database locking mechanisms to prevent data corruption.
Executing the migration during off-peak hours.

Rollback Strategy

A comprehensive rollback strategy is in place. If issues arise during the production
migration, we will:

1. Stop: Immediately halt the migration process.
2. Restore: Restore the database from the backup created before the migration.
3. Analyze: Investigate the cause of the failure in a non-production environment.
4. Correct: Implement necessary fixes and re-test the migration process.

The application code will also be reverted to the previous version. This ensures a
quick return to the stable state.

Page 5 of 11



Impact Assessment and Risk Analysis

The Django migration carries potential impacts that span application functionality,
performance, and user experience. Careful consideration and mitigation strategies
are crucial for a successful transition.

Functional Impact

Several components may require adjustments or could potentially break during the
migration. These include ACME-1's custom user authentication logic, which will
need to be adapted to the new data structures. Additionally, CMS templates that rely
on the existing data structures will need updates to ensure compatibility and proper
rendering. E-commerce workflows, especially those dependent on product
categories, also need thorough testing and modification where necessary to
maintain their integrity. In the worst case, failure to address these elements could
lead to authentication failures, broken CMS displays, and disrupted e-commerce
operations.

Page 6 of 11



Performance Implications

The migration process may lead to an increase in query times, particularly
immediately following the migration. Docupal Demo, LLC will implement
optimized indexing strategies to counteract this. These optimizations are designed
to ensure that query performance remains within acceptable limits and minimizes
disruption to ACME-1's users. Ongoing monitoring will track database performance,
allowing for proactive adjustments to indexes and query optimization as needed.

Risk Mitigation

Docupal Demo, LLC will employ several risk mitigation strategies throughout the
migration process. A complete pre-migration data backup safeguards against data
loss or corruption. Extensive testing within staging environments mirrors the
production setup, providing opportunities to identify and resolve potential issues
before they impact live users. The migration will proceed in a step-by-step manner,
allowing for close monitoring and immediate rollback capabilities should
unforeseen problems arise. These measures will ensure a controlled and safe
transition.

Risk Severity Levels

The following table illustrates the risk severity levels across different components:

Component
Risk
Level

Mitigation Strategy

Custom Authentication
Logic

High Thorough testing and code adaptation

CMS Templates Medium Template updates and content verification

E-commerce Workflows Medium Workflow testing and data integrity checks

Database Query
Performance

Medium
Optimized indexing and performance
monitoring

Page 7 of 11



Testing and Validation Plan

The Django migration will undergo thorough testing and validation to ensure data
integrity and application stability. Our testing strategy covers various environments
and scenarios.

Testing Environments

We will use three testing environments: development, staging, and production. Each
environment will contain representative data volumes to simulate real-world
conditions.

Test Cases

Our test cases will include:

Data consistency checks: We will verify that all data is migrated correctly and
consistently across all tables.
User profile access tests: We will confirm that users can access their profiles
and data without errors after the migration.
CMS content integrity tests: We will ensure that all CMS content, including
text, images, and videos, is migrated without corruption.
E-commerce transaction tests: We will validate that e-commerce transactions
can be processed successfully after the migration.

Testing Procedures

We will employ a combination of unit and integration tests. Unit tests will focus on
individual components of the migration, while integration tests will verify the
interaction between different components.

Rollback Validation

Rollback validation will involve the following steps:

1. Reverting migrations: We will use the migrate command to revert the
migrations.

Page 8 of 11



2. Data integrity verification: We will compare the data in the database with the
pre-migration backup to confirm that the rollback process restores the
database to its original state.

3. Functional testing: We will perform functional tests on the affected
components to ensure that they are working as expected after the rollback.

We will document all test results and address any issues identified during testing
before proceeding to the next environment.

Deployment and Rollout Plan

The deployment will proceed in two phases: staging and production. We will deploy
to the staging environment first to validate the migration. After successful testing
and validation in staging, we will proceed with the production deployment.

Deployment Schedule

Environment Deployment Date

Staging 2024-03-15

Production 2024-03-22

Page 9 of 11



Deployment Steps

1. Backup: Create a full database backup before initiating the migration on both
staging and production environments.

2. Code Deployment: Deploy the updated Django code, including the new
migrations, to the respective environment.

3. Migration Application: Apply the migrations using Django's migrate
command.

4. Verification: Perform thorough testing and verification of the application's
functionality.

5. Monitoring: Continuously monitor the application for any errors or
performance issues.

Rollback Procedure

In the event of critical errors detected post-migration, we will execute a rollback.
This involves:

1. Database Restoration: Restore the database from the backup created before
the migration.

2. Migration Reversal: Use Django's migrate command to revert to a previous
migration state.

3. Code Reversion: Deploy the previous version of the Django code, if necessary.

Monitoring

Post-migration, we will use the following tools to monitor the application:

Django Debug Toolbar: For real-time debugging and performance analysis.
Prometheus: For collecting and analyzing metrics related to application
performance and resource utilization.
Custom Logging Scripts: For tracking specific events and potential issues.

Resource and Timeline Estimation

We estimate that this Django migration project will require a team of 2-3 engineers.
The project timeline is divided into four key phases: Planning, Development,
Testing, and Deployment. Each phase has a dedicated duration to ensure
thoroughness and accuracy.

Page 10 of 11



Here's a breakdown of the estimated duration for each phase:

Planning: 1 week
Development: 2 weeks
Testing: 1 week
Deployment: 1 day

We anticipate that the project will require approval from ACME-1's IT security team.
This approval is factored into the overall timeline to avoid potential delays. The total
estimated project duration is approximately 4 weeks and 1 day.

Appendices and References

Appendix A: Supplementary Materials

This section provides supplementary materials to support the Django migration
proposal for ACME-1. It includes model diagrams illustrating the proposed schema
changes. Further, links to relevant Django documentation on migrations are
included. A glossary of terms is provided for clarity. These materials offer additional
context and resources for understanding the proposed migration process.

Appendix B: References

Django documentation on migrations
ACME-1's database schema documentation

Page 11 of 11


