
Table of Contents
Introduction 3

Purpose of this Proposal 3

Scope of Work 3

Current Performance Assessment 3

Database Performance 4

Image Processing 4

API Endpoints 4

Server Performance 4

Optimization Strategies 4

Code Refactoring 5

Database Optimization 5

Caching Implementation 6

Infrastructure Improvements 6

Code Refactoring and Best Practices 7

Addressing Code Smells 7

Leveraging Rails Conventions 8

Gem and Library Updates 8

Database Optimization 8

Indexing Strategies 8

Query Optimization 9

Schema Adjustments 9

Performance Impact 9

Caching Implementation 9

Rails Caching Layers 10

Recommendations 10

Background Jobs and Asynchronous Processing 11

Identifying Background Tasks 11

Job Queue Optimization 11

Recommended Job Management Systems 11

Server and Infrastructure Tuning 12

Web Server Configuration 12

Ruby VM Tuning 12

Load Balancing and Scaling 12

Page 1 of 15



Cloud Infrastructure Improvements 13

Security and Compliance Considerations 13

Data Protection 13

Compliance 14

Potential Risks Mitigation 14

Conclusion and Roadmap 14

Implementation Plan 14

Measuring Success 15

Page 2 of 15



Introduction

This document presents a comprehensive proposal from Docupal Demo, LLC to
Acme, Inc. (ACME-1) for optimizing your Ruby on Rails application. Our assessment
indicates that your application is currently facing performance challenges. These
include slow page load times and increased server response times, especially during
periods of high user activity.

Purpose of this Proposal

The purpose of this proposal is to outline a strategic approach to enhance your
application's performance. We aim to provide actionable solutions to address the
identified bottlenecks. The primary goals are to significantly reduce page load
times, improve server response times, and enhance the overall scalability and
stability of your Ruby on Rails application.

Scope of Work

This proposal details the scope of our optimization efforts. It covers key areas such
as code analysis, database optimization, infrastructure review, and caching
strategies. Our proposed solutions are designed to align with your business needs
and provide a measurable return on investment. This document is tailored for
ACME-1's technical team, including developers, system administrators, and IT
management, providing them with the necessary information to evaluate our
proposed optimization strategies.

Current Performance Assessment

ACME-1's Ruby on Rails application has been analyzed using New Relic, Rails
Profiler, and database query analysis tools to identify performance bottlenecks. Our
assessment reveals key areas requiring optimization to enhance overall application
performance and user experience.

Page 3 of 15



Database Performance

Database queries represent a significant bottleneck. Slow query performance is
evident, leading to increased response times. We have also observed occasional lock
contention within the database server, further impacting performance during peak
usage. Detailed analysis of query execution plans is necessary to pinpoint inefficient
queries and optimize database schema.

Image Processing

Image processing tasks contribute noticeably to performance slowdowns. The
current implementation appears to be resource-intensive, impacting response
times, particularly for features involving image uploads and manipulation.
Optimizing image processing algorithms and leveraging caching mechanisms can
alleviate these bottlenecks.

API Endpoints

Specific API endpoints demonstrate performance issues. These endpoints
experience high latency, affecting the responsiveness of dependent services and
user-facing features. Profiling these endpoints will allow us to determine the root
causes of the slowdown, whether it be inefficient code, excessive database calls, or
network latency.

Server Performance

The server infrastructure is adequately provisioned. However, the server exhibits
high CPU utilization during peak hours. This suggests that while the hardware is
sufficient, the application code is not efficiently utilizing available resources.
Optimizing code execution and reducing unnecessary CPU cycles can improve
server performance and prevent potential bottlenecks as the application scales.

Optimization Strategies

To enhance the performance of the ACME-1 Ruby on Rails application, Docupal
Demo, LLC proposes the following optimization strategies. These strategies cover
code refactoring, database optimization, caching mechanisms, and infrastructure
improvements.

Page 4 of 15



Code Refactoring

Improving code efficiency is crucial for a faster application. We will focus on the
following:

Refactor Complex Methods: We will break down complex methods into
smaller, more manageable units. This improves readability and
maintainability. Smaller methods are also easier to test and optimize.

Single Responsibility Principle (SRP): We will apply the SRP to ensure each
class and method has a single, well-defined purpose. This reduces coupling
and increases code reusability. SRP simplifies debugging and future
modifications.

Code Reviews: Implement regular code reviews to identify and rectify
inefficient code patterns. Peer reviews can catch issues early in the
development cycle.

Database Optimization

Database interactions often represent a performance bottleneck. We will address
this through:

Add Indexes: Adding indexes to frequently queried columns will significantly
improve query speed. Indexes allow the database to locate data faster, avoiding
full table scans. We will analyze query patterns to identify the best columns for
indexing.

Optimize Query Structures: We will rewrite inefficient queries to improve
performance. This includes avoiding SELECT *, using joins effectively, and
minimizing the use of subqueries. Tools like EXPLAIN will be used to analyze
query performance.

Prepared Statements: Implementing prepared statements will help prevent
SQL injection attacks and improve performance. Prepared statements
precompile SQL queries, reducing parsing overhead for repeated queries.

Database Connection Pooling: We will use connection pooling to reuse
database connections. This avoids the overhead of establishing new
connections for each request.

Page 5 of 15



Data Archiving: Implement data archiving strategies to move historical or
infrequently accessed data to separate storage. This reduces the size of the
primary database, improving query performance.

Caching Implementation

Effective caching can dramatically reduce database load and response times. Our
approach includes:

Fragment Caching: Implementing fragment caching for frequently rendered
views will prevent unnecessary re-rendering. Fragment caching stores the
output of a view fragment, reusing it for subsequent requests.

Redis Caching: We will use Redis for caching frequently accessed data. Redis is
an in-memory data store that provides fast read and write operations. Data
such as user sessions, API responses, and frequently accessed database records
can be cached.

HTTP Caching: Configure HTTP caching headers to leverage browser and CDN
caching. Proper HTTP caching can reduce server load and improve user
experience.

Cache Invalidation Strategies: Implement effective cache invalidation
strategies to ensure cached data remains up-to-date. This includes using time-
based expiration and event-based invalidation.

Infrastructure Improvements

The underlying infrastructure plays a vital role in application performance. Our
recommendations are:

Upgrade Server Hardware: Upgrading server hardware with faster CPUs, more
RAM, and SSD storage can significantly improve performance. The current
server specifications will be analyzed to identify bottlenecks.

Optimize Server Configurations: We will optimize server configurations,
including tuning the web server (e.g., Nginx, Apache) and the application
server (e.g., Puma, Unicorn). This includes adjusting worker counts, timeout
settings, and memory allocation.

Page 6 of 15



Load Balancer Implementation: Implementing a load balancer will distribute
traffic across multiple servers. This improves availability and scalability. Load
balancers also provide health checks and failover capabilities.

Content Delivery Network (CDN): Using a CDN to serve static assets (e.g.,
images, JavaScript, CSS) will reduce latency and improve load times. CDNs
cache content at multiple locations around the world, delivering it to users
from the nearest server.

Monitoring and Alerting: Set up comprehensive monitoring and alerting
systems to track application performance and identify issues proactively. Tools
like New Relic, Datadog, or Prometheus can be used.

Docupal Demo, LLC is confident that implementing these optimization strategies
will result in a significant improvement in the performance and scalability of the
ACME-1 Ruby on Rails application.

Code Refactoring and Best Practices

Our team will focus on refactoring the existing codebase to improve its
maintainability and performance. This involves addressing common code smells
we've identified within the ACME-1 application.

Addressing Code Smells

We will target long methods by breaking them down into smaller, more manageable
units. This improves readability and testability. We will also eliminate duplicate code
through extraction and abstraction, reducing redundancy and the risk of
inconsistencies. A key area of focus will be reducing excessive database queries, a
common bottleneck in Rails applications.

Leveraging Rails Conventions

We'll ensure ACME-1 fully utilizes Rails' built-in features to maximize performance.
This includes implementing aggressive caching strategies at different levels such as
fragment caching, and action caching. Optimizing Rails routes will lead to faster
request routing and improved overall responsiveness. We'll also implement eager
loading to minimize N+1 query problems, a common cause of slow page loads.

Page 7 of 15



Gem and Library Updates

Staying up-to-date with the latest stable versions of Rails, Ruby, and associated
gems is crucial for security and performance. We recommend upgrading to the
newest versions while carefully assessing compatibility with the existing ACME-1
codebase. This involves thorough testing to identify and resolve any potential
conflicts or regressions. This update will also bring in the latest security patches
and performance improvements inherent in newer versions of the framework and
libraries.

By implementing these code refactoring and best practices, we aim to create a more
maintainable, efficient, and scalable Ruby on Rails application for ACME-1.

Database Optimization

We will optimize ACME-1's database to improve application performance. Our
approach addresses slow queries, indexing strategies, and schema adjustments.

Indexing Strategies

We will implement indexing to speed up data retrieval. This includes:

Foreign Key Indexing: Indexing foreign keys to optimize join operations.
Frequently Searched Columns: Adding indexes to columns frequently used in
WHERE clauses.
Composite Indexes: Creating composite indexes for common query patterns
involving multiple columns.

These indexes will reduce the time the database spends scanning tables. The result
is faster query execution.

Query Optimization

We will analyze and optimize resource-intensive queries. This involves:

Rewriting inefficient queries.
Using EXPLAIN to identify performance bottlenecks.
Optimizing join operations.
Ensuring proper use of indexes.

Page 8 of 15



The goal is to reduce query execution time and database load.

Schema Adjustments

We will review ACME-1's database schema for potential improvements. This
includes:

Denormalization: Consider denormalizing data for read-heavy tables. This can
reduce the need for complex joins.
Schema Refinement: Adjusting the schema to better align with common
query patterns. This might involve adding calculated columns or restructuring
tables.

Schema adjustments will be carefully considered to balance performance gains with
data integrity.

Performance Impact

The following bar chart shows the estimated improvement in query execution times
after optimization:

This chart illustrates the potential for significant performance gains through
database optimization.

Caching Implementation

We will enhance ACME-1's application performance by strategically implementing
and optimizing caching mechanisms. Currently, fragment and page caching are in
use. Our focus will be on expanding caching to API endpoints and areas
characterized by frequent reads and infrequent writes. We anticipate these
improvements to yield a 30-50% reduction in page load times and a 20-30%
improvement in server response times.

Rails Caching Layers

Rails offers several caching layers that we will leverage:

Page 9 of 15



Application Caching: This is a versatile option for storing arbitrary data. It is
ideal for caching the results of complex queries or computations that are used
across multiple requests.
Fragment Caching: This allows us to cache specific portions of a view, such as
partials or sections of HTML. It is useful for dynamic pages where only certain
parts need to be regenerated on each request.
HTTP Caching: This utilizes the browser's caching mechanism and HTTP
headers to reduce the number of requests that reach the server. We can set
appropriate Cache-Control headers to instruct browsers to cache static assets
and even dynamic content for specified durations.

Recommendations

We recommend the following caching strategies:

API Endpoints: Implement application caching for API responses. This will
involve caching the serialized data returned by the API, reducing the load on
the database and application servers. We will use keys that incorporate
relevant parameters to ensure cache freshness.
High-Read/Low-Write Areas: Employ a combination of fragment and
application caching in areas with frequent reads and infrequent writes. For
example, we can cache product listings, user profiles, or frequently accessed
reports.
HTTP Caching for Assets: Aggressively cache static assets such as images, CSS
files, and JavaScript files using HTTP caching. We will configure the web server
to set long Cache-Control headers for these assets, minimizing the number of
requests the browser makes to the server. We'll use asset fingerprints to ensure
that users always get the latest version of the assets after a deployment.

Background Jobs and Asynchronous
Processing

ACME-1 currently handles several tasks synchronously, impacting response times
and user experience. We recommend shifting suitable tasks to background
processing to improve application performance.

Page 10 of 15



Identifying Background Tasks

Tasks such as sending emails, processing large data files, and generating reports are
ideal candidates for asynchronous processing. By moving these operations to the
background, the main application thread remains responsive, leading to faster page
loads and a smoother user experience.

Job Queue Optimization

To ensure efficient background processing, optimizing the job queue is crucial. This
includes several key areas:

Worker Count: Adjusting the number of workers to match the workload. Too
few workers can lead to delays, while too many can strain system resources.
Efficient Serialization: Using efficient job serialization to minimize the time
spent encoding and decoding job data.
Latency Monitoring: Regularly monitoring job queue latency to identify and
address bottlenecks.

Recommended Job Management Systems

We recommend using either Sidekiq or Resque for job management. Both are robust
and reliable solutions that offer excellent performance and scalability. They provide
tools for managing job queues, monitoring worker status, and handling job failures.
Sidekiq is generally favored for its multi-threading capabilities and efficient
resource utilization.

Server and Infrastructure Tuning

To enhance ACME-1's application performance, Docupal Demo, LLC will focus on
optimizing server configurations and infrastructure components. This includes web
server tuning, Ruby VM settings adjustments, and improvements to load balancing,
scaling, and cloud infrastructure.

Web Server Configuration

We will optimize ACME-1's web server (Nginx or Apache) configuration. This
involves adjusting parameters such as worker processes, keep-alive connections,
and caching policies. Proper tuning ensures efficient handling of incoming requests

Page 11 of 15



and reduces server load. Specific configuration tweaks include:

Worker Processes: Adjust the number of worker processes based on the
server's CPU cores and expected traffic.
Keep-Alive Connections: Enable and configure keep-alive connections to
reduce the overhead of establishing new connections for each request.
Caching: Implement aggressive caching strategies for static assets and
frequently accessed data to minimize server load and improve response times.
Gzip Compression: Enable Gzip compression to reduce the size of HTTP
responses, improving bandwidth utilization and reducing page load times.

Ruby VM Tuning

The Ruby Virtual Machine (VM) settings will be tuned for optimal performance.
This includes adjusting garbage collection parameters and concurrency settings. We
will analyze ACME-1's application behavior to identify bottlenecks and fine-tune the
VM for maximum efficiency. Key areas of focus include:

Garbage Collection: Optimize garbage collection settings to minimize pauses
and improve memory management.
Concurrency: Adjust concurrency settings (e.g., using Puma or Unicorn) to
efficiently handle multiple concurrent requests.
Memory Allocation: Fine-tune memory allocation parameters to reduce
memory fragmentation and improve application stability.

Load Balancing and Scaling

To improve ACME-1's application's ability to handle increased traffic, we will
implement a load balancer to distribute traffic across multiple servers. Auto-scaling
will be configured to automatically adjust resources based on demand, ensuring
optimal performance and availability.

Load Balancer Implementation: Implement a load balancer (e.g., HAProxy or
Nginx) to distribute traffic across multiple application servers.
Auto-Scaling Configuration: Configure auto-scaling policies to automatically
add or remove servers based on CPU utilization, memory usage, and other
performance metrics.

Page 12 of 15



Cloud Infrastructure Improvements

We recommend migrating ACME-1's database to a scalable cloud-based service like
Amazon RDS or Google Cloud SQL. Additionally, we will leverage cloud-based
caching services like Amazon ElastiCache to further improve performance.

Database Migration: Migrate the database to a scalable cloud service like
Amazon RDS or Google Cloud SQL to improve performance, availability, and
scalability.
Caching Implementation: Implement a cloud-based caching service like
Amazon ElastiCache or Redis to cache frequently accessed data and reduce
database load.

Security and Compliance Considerations

Our optimization strategies for ACME-1 prioritize maintaining robust security and
adhering to relevant compliance standards. We recognize that modifications to the
Ruby on Rails application, while improving performance, could inadvertently
introduce vulnerabilities.

Data Protection

Data protection remains paramount throughout the optimization process. We will
implement regular data backups to safeguard against data loss. Data validation
procedures will be integrated to ensure data integrity during and after any
modifications. Our development practices will strictly adhere to security best
practices to minimize risks.

Compliance

ACME-1's compliance requirements are fully considered. PCI DSS compliance will be
maintained for handling payment card information. GDPR compliance will be
ensured to protect the personal data of EU citizens, if applicable. Our optimization
efforts will align with these standards.

Page 13 of 15



Potential Risks Mitigation

Changes to database schemas or caching mechanisms could present security risks.
To address these, we will conduct thorough security testing after implementing any
modifications to these areas. This includes penetration testing and code reviews to
identify and remediate potential vulnerabilities before deployment. We will also
implement robust monitoring and alerting to detect and respond to any security
incidents promptly.

Conclusion and Roadmap

Our proposed Ruby on Rails optimization strategy for ACME-1 aims to deliver
significant improvements in application performance, reduce infrastructure
expenses, and boost user satisfaction. We plan to achieve this through a
combination of code profiling, database optimization, caching strategies, and
infrastructure adjustments.

Implementation Plan

We recommend a phased implementation approach spanning 8-12 weeks.

Phase 1: Assessment and Planning (Weeks 1-2)

Detailed application profiling and performance bottleneck identification.
Infrastructure review and resource utilization analysis.
Development of a detailed optimization plan with specific targets.

Phase 2: Optimization Implementation (Weeks 3-8)

Code refactoring and optimization based on profiling results.
Database query optimization and indexing improvements.
Implementation of caching strategies (e.g., fragment caching, page caching).
Infrastructure adjustments, including server configuration and resource
allocation.

Phase 3: Testing and Deployment (Weeks 9-12)

Page 14 of 15



Rigorous testing in a staging environment to validate performance gains.
Iterative refinement based on testing results.
Deployment to production with careful monitoring.

Measuring Success

Post-implementation, we will closely monitor key performance indicators (KPIs) to
measure the success of the optimization efforts. These KPIs include page load times,
server response times, error rates, and user feedback. Regular reports will be
provided to ACME-1, detailing progress against these metrics.

Page 15 of 15


