[5) DOCUPAL

Docupal Demo, LLC

Table of Contents

INEFOAUCEION oo 3
OPtimizZation GOALS --------mr-mremmmmr oo 3
Performance Analysis ------------oooommeommms e 3
KeY BOtHI@NECKS -----nmmommmms oo 3
Profiling Tools and Methods ----------------smmrmemmmoen oo 4
Current System Performance --------------soremmemmons oo 4
Optimization Strategies --------------oooroemr oo 5
Caching MecChaniSIms -------------ommremmrmno oo oo 5
Database Query OptimizZation «---------ooooommmmmi o 6
Code Best PractiCes -~ 6
Database Optimization -« 7
Schema TUIINE - 7
Indexing Strategies ---------------sommmormor oo 7
Query OPHIMIZALION -~ ---nnmrrmemomesermo oo 7
Validation ------oooommrmm oo 8
Security Enhancements ----------o-ooooooommoioe 8
CSRE ProteCtiOn oo 8
Input Validation and Sanitization ----------coommmmmmmmmm 8
Keeping CakePHP Up-t0-Date ------------memmmrm oo 8
Scalability and Load Testing -« 9
Vertical Scaling - 9
Horizontal Scaling -« 9
Load Testing Simulation -----------oooeemmmmmmm oo 9
Plugin and Workflow Management ----------------oomemomo e 10
Plugin Management -« oo 10
WOrKflow AUtOm@tion ---------osooemmommeein e 10
Benchmarking and Metrics Reporting - 1
Initial Benchmarking ---------o--oommmmmmmmmmm oo 11
Ongoing Metrics REPOIting ------------rrmsmmmmmmmmoo oo 11
Sample Grant Chart Illustrating Milestones -« 1
Sample Metric Targets -----------or-roomrmrmmrmn oo 12
Conclusion and Recommendations ----------------oommeemmmmmens oo 12
Database Optimization ------------oomosemmmmemos oo 12

Page 1 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Caching Strategy - - 13
Code Efficiency - 13

Page 2 of 13

+123 456 7890 a7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Introduction

This document outlines Docupal Demo, LLC's proposal to optimize the CakePHP
application for ACME-L. Our primary goals are to improve application speed and
reduce server load. This proposal is targeted towards ACME-1's technical team and
stakeholders, providing a clear path to enhance application performance.

Optimization Goals

We will focus on key areas within the CakePHP application to achieve measurable
improvements. This includes database query optimization, code profiling, and
server configuration adjustments. Our approach will ensure a faster, more efficient,
and scalable application for ACME-1. We aim to deliver solutions that provide
immediate benefits and long-term maintainability.

Performance Analysis

Our analysis of ACME-1's CakePHP application focused on identifying key
performance bottlenecks and areas for optimization. We measured page load times,
server response times, and database query execution times to gain a comprehensive
understanding of the system's performance.

Key Bottlenecks

Our investigation revealed three primary bottlenecks affecting the application's
performance:

 Slow Database Queries: Inefficiently written or un-optimized database queries
are significantly slowing down data retrieval.

« Inefficient Code: Some sections of the application’s code are not optimized for
performance, leading to unnecessary processing overhead.

 Lack of Caching: The application does not effectively utilize caching
mechanisms, resulting in repeated execution of the same queries and
computations.

Page 3 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Profiling Tools and Methods

We employed a combination of tools and methods to profile the application's
performance:

» CakePHP DebugkKit: This tool provided detailed insights into query execution
times, memory usage, and other performance metrics within the CakePHP
framework.

» Xdebug: We used Xdebug to profile the application’s code, identifying slow-
performing functions and areas for optimization.

« Browser Developer Tools: Browser developer tools were used to measure page
load times, identify slow-loading resources, and analyze network traffic.

Current System Performance

The current system exhibits the following performance characteristics:

« Throughput: The system's throughput is limited by the slow database queries
and inefficient code, resulting in a low number of requests processed per unit
of time.

 Latency: Users experience noticeable delays when interacting with the
application, particularly when accessing data-intensive pages.

» Resource Usage: The server's CPU and memory resources are underutilized
during periods of low traffic but become strained during peak usage,
indicating a lack of scalability.

The line chart above illustrates the average response times for three key pages
within the application.

The bar chart above represents the resource utilization (as a percentage) during a
typical peak traffic period.

The improvements will be delivered in stages, as illustrated in the Grant chart
below.

Page 4 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

\>] © A bl 9 Q N v D I)l o A\ >) Q N
N S N S "y v 1 % 0z 1V 1 T 1 vV 1V &) > N 1V > [=)
V‘\)Q P‘\Q P‘\)Q ‘?‘\’\Q P“Q P‘\)Q) ‘P‘\)Q P‘\Q ‘?*\Q P‘\Q P\\)Q P\\Q P.\)Q ‘?‘\Q ?‘\)Q \).\)C) ?‘\:‘Q 6@? 6@}? %@Q %e,‘? %QQ

Phase 1

Phase 2

Phase 3

Optimization Strategies

This section outlines the optimization strategies Docupal Demo, LLC will
implement to improve the performance of the ACME-1 CakePHP application. These
strategies address caching, database query efficiency, and code best practices.

Caching Mechanisms

We will implement several caching mechanisms to reduce server load and improve
response times.

« Full-page caching: This will cache entire pages, serving them directly from the
cache for subsequent requests. This significantly reduces the load on the
application server for frequently accessed pages.

 Object caching: Using Redis or Memcached, we will cache frequently accessed
objects. This reduces the need to repeatedly query the database for the same
data. We will evaluate both Redis and Memcached to determine the best fit for
ACME-T’s specific needs, considering factors such as data structure
requirements and performance characteristics.

 Query caching: We will implement caching of database query results. This
prevents the application from re-executing the same queries repeatedly,
resulting in faster response times.

Page 5 of 13

+123 456 7890 a7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[©) DOCUPAL

Docupal Demo, LLC

Database Query Optimization

Optimizing database queries is crucial for improving application performance. We
will focus on the following areas:

« Database schema optimization: We will review the database schema to
identify potential areas for improvement, such as data type optimization and
normalization.

 Index optimization: We will analyze existing indexes and add new indexes
where appropriate to speed up query execution. We will pay special attention to
indexes on columns used in WHERE clauses and JOIN conditions.

 Query rewriting: We will identify and rewrite slow-running queries to improve
their efficiency. This may involve using more efficient SQL constructs,
optimizing JOIN operations, or reducing the amount of data retrieved.

« Reducing the number of queries: We will analyze the application’s code to
identify opportunities to reduce the number of database queries. This may
involve using eager loading to retrieve related data in a single query or caching
query results. We will leverage CakePHP's ORM features to optimize data
retrieval.

Code Best Practices

Adhering to coding best practices is essential for maintaining a performant and
maintainable application. Our team will follow these guidelines:

» CakePHP coding standards: We will strictly adhere to CakePHP coding
standards to ensure consistency and readability. This includes following
naming conventions, using proper indentation, and writing clear and concise
code.

« Efficient algorithms: We will use efficient algorithms and data structures to
minimize the amount of processing required. We will analyze the time and
space complexity of different algorithms to choose the most appropriate one
for each task.

« Minimizing external dependencies: We will minimize the use of external
dependencies to reduce the application's footprint and improve its
performance. We will carefully evaluate the need for each dependency and
choose lightweight alternatives where possible.

 Code profiling: We will use code profiling tools to identify performance
bottlenecks in the application’s code. This will allow us to focus our
optimization efforts on the areas that will have the greatest impact. We will

Page 6 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

use tools such as Xdebug and CakePHP's built-in profiling features to gather
performance data.

Database Optimization

ACME-1's database performance is critical for application speed and reliability. We
will focus on schema tuning, indexing strategies, and query optimization. These
steps will minimize execution times and maximize resource utilization.

Schema Tuning

We will review ACME-1's database schema for inefficiencies. This includes:

« Identifying oversized data types.
« Normalizing tables to reduce data redundancy.
« Optimizing relationships between tables.

Careful schema adjustments can significantly improve query performance and
storage efficiency.

Indexing Strategies

Proper indexing dramatically speeds up data retrieval. We will:

» Analyze query patterns to identify frequently accessed columns.
« Create indexes on these columns.

« Evaluate and adjust existing indexes for effectiveness.

« Remove redundant or unused indexes.

Effective indexing will reduce the amount of data the database needs to scan.
Query Optimization

Inefficient queries are a major cause of slow performance. Our approach includes:

Analyzing slow queries using profiling tools.
Rewriting queries to use more efficient SQL.
Ensuring queries use indexes effectively.
Optimizing JOIN operations.

Using caching mechanisms where appropriate.

Page 7 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Validation

We will validate the impact of our database optimization through performance
testing. Query execution times will be monitored before and after optimization.
This ensures improvements are measurable and sustainable.

Security Enhancements

ACME-1's CakePHP application security will be enhanced through several key
measures. These enhancements focus on protecting against common web
vulnerabilities and ensuring data integrity.

CSREF Protection

Cross-Site Request Forgery (CSRF) protection will be implemented. This prevents
unauthorized commands from being submitted from a user’s browser without their
consent. CakePHP's built-in CSRF component will be utilized to generate and
validate tokens for each form submission, mitigating the risk of CSRF attacks.

Input Validation and Sanitization

Robust input validation will be enforced across all user inputs. CakePHP's validation
features will be used to define rules for each field, ensuring that only expected data
types and formats are accepted. Sanitization techniques will be applied to user-
submitted data to neutralize potentially malicious code, such as JavaScript or HTML.
This will protect against cross-site scripting (XSS) attacks.

Keeping CakePHP Up-to-Date

The CakePHP framework and all its dependencies will be kept up-to-date with the
latest security patches. Regularly updating the framework is crucial for addressing
newly discovered vulnerabilities and ensuring that the application benefits from the
latest security improvements. This includes monitoring security advisories and
applying updates promptly. The update process will be part of routine maintenance.

Page 8 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Scalability and Load Testing

ACME-1's CakePHP application requires a robust scalability strategy to handle
current and future user loads. We propose a two-pronged approach: vertical scaling
and horizontal scaling.

Vertical Scaling

Vertical scaling involves increasing the resources of the existing server. This
includes upgrading the CPU, RAM, and storage. Vertical scaling provides a quick
performance boost. However, it has limitations. There is a maximum resource level
for a single server.

Horizontal Scaling

Horizontal scaling involves adding more servers to the application infrastructure. A
load balancer distributes traffic across these servers. Horizontal scaling offers
greater scalability and redundancy. If one server fails, the others continue to operate.

Load Testing Simulation

We will conduct comprehensive load testing to simulate user traffic. This testing
identifies performance bottlenecks and ensures stability under pressure.

Scenario 1: Baseline Performance

This test establishes the application's performance with the current infrastructure.
Scenario 2: Vertical Scaling Simulation

This test simulates the impact of increased server resources.

Scenario 3: Horizontal Scaling Simulation

This test simulates the impact of adding more servers to the cluster.

These simulations demonstrate the effectiveness of both vertical and horizontal
scaling. Horizontal scaling provides the most significant improvement in response
time under heavy load. We will tailor the scaling strategy to ACME-1's specific needs
and budget.

Page 9 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[©) DOCUPAL

Docupal Demo, LLC

Plugin and Workflow Management

Effective plugin management and streamlined workflows are crucial for
maintaining a healthy and efficient CakePHP application. We propose the following
best practices for ACME-L.

Plugin Management

We recommend a centralized approach to plugin management using Composer.
This ensures version control and simplifies updates. Regularly review installed
plugins for compatibility and security vulnerabilities. Consider using a dedicated
plugin management tool to automate updates and dependency checks. Before
integrating any new plugin, thoroughly test it in a staging environment to avoid
conflicts with existing code. Document all plugins, including their purpose, version,
and any custom configurations.

Workflow Automation

Automating development workflows can significantly reduce errors and speed up
the development cyclee @~ We advise implementing Continuous
Integration/Continuous Deployment (CI/CD) pipelines. This will automate testing
and deployment processes. Integrate code quality tools like PHPStan or Psalm to
enforce coding standards and catch potential bugs early. Automate database
migrations to ensure consistency across different environments. Use Git hooks to
automatically run tests or code style checks before commits. We recommend
Jenkins, GitLab CI, or GitHub Actions for CI/CD implementation. Automating tasks
such as code review, testing, and deployment will improve efficiency and reduce the
risk of human error.

Benchmarking and Metrics Reporting

We will use benchmarking to establish a performance baseline for your CakePHP
application. This baseline will serve as a point of comparison as we implement
optimizations. We will track key metrics throughout the optimization process to
measure the impact of our changes.

Page 10 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Initial Benchmarking

Before making any changes, we will conduct a thorough assessment of your
application's current performance. This involves measuring response times for
various actions, database query execution times, and server resource utilization
(CPU, memory, and disk I/0). We'll use tools like CakePHP's built-in profiler, browser
developer tools, and server monitoring utilities to gather this data. The initial
benchmarking phase will last approximately one week.

Ongoing Metrics Reporting

We will generate monthly reports detailing the performance metrics. These reports
will include:

» Response times for key application actions

Database query performance statistics

Server resource utilization graphs

A summary of optimizations implemented during the reporting period
A comparison of current performance against the initial baseline

Acme, Inc's IT Operations team will be responsible for reviewing these reports and
acting on the insights they provide. We will be available to discuss the findings and
recommendations with your team.

Page 11 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Sample Grant Chart Illustrating Milestones

Q'\(’b 0;19 qu)/ 0?? quo Cj/b O?Q QN QOJ Q<o Q/\ QOJ Q\r} Q\Zb Q\i’) QN/’\ Q@ Qq/'\/ Qr{:) Qq(?
vp & vo ‘?Q S v\v S S P
Initial Benchmarking .

Code Optimization

Database Optimization

Final Testing .

Sample Metric Targets

We aim to achieve the following performance improvements:

« Reduce average page load times by 20%
» Decrease database query execution times by 15%
» Lower server resource utilization by 10%

These targets are estimates, and the actual results may vary depending on the
specific characteristics of your application. We will continuously monitor progress
and adjust our optimization strategies as needed to maximize performance gains.

Conclusion and Recommendations

Our analysis reveals significant opportunities to enhance the performance of your
CakePHP application. We recommend focusing on three key areas: database query
optimization, caching implementation, and code efficiency improvements.

Page 12 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

[5) DOCUPAL

Docupal Demo, LLC

Database Optimization

Inefficient database queries are a primary bottleneck. Optimizing these queries will
reduce database load and improve response times. Specific recommendations
include indexing frequently queried columns, rewriting complex queries, and using
eager loading to minimize the number of database requests.

Caching Strategy

Implementing a comprehensive caching strategy is crucial. We suggest using
CakePHP's built-in caching mechanisms for frequently accessed data. This includes
page caching, object caching, and query caching. Utilizing a caching system like
Redis or Memcached can further improve performance.

Code Efficiency

Improving code efficiency will reduce server resource consumption. We recommend
profiling your application to identify performance hotspots. Refactoring inefficient
code, minimizing external dependencies, and optimizing image and asset delivery
will contribute to faster page load times and lower server costs.

By implementing these recommendations, ACME-1 can expect to see a noticeable
reduction in page load times and improved server response times. This will lead to a
better user experience and potentially lower server costs due to reduced resource
consumption.

Page 13 of 13

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country

