
Table of Contents
Executive Summary 3

Key Benefits 3

Project Overview 3

Current Environment Assessment 3

Key Components 3

Performance and Security 4

Codebase Health 4

Upgrade Considerations 4

Upgrade Scope and Objectives 4

Upgrade Scope 5

Objectives 5

Milestones and Deliverables 5

Version Compatibility and Dependency Analysis 6

Compatibility Issues 6

Dependency Updates 6

Refactoring Efforts 7

Testing Strategy 7

Risk Assessment and Mitigation 7

Technical Risks 7

Operational Risks 8

Fallback and Rollback Plans 8

Monitoring and Communication 9

Upgrade Implementation Plan 9

Upgrade Phases 9

Step-by-Step Activities 10

Timeline and Milestones 10

Tools and Techniques 11

Testing Strategy 11

Test Types 11

Backward Compatibility 12

Automation Tools 12

Bug Tracking and Resolution 12

Performance and Security Considerations 12

Page 1 of 14



Expected Improvements 13

Security Compliance 13

Post-Upgrade Monitoring 13

Documentation and Training 13

Documentation Updates 13

Training Programs 14

Coding Standards 14

Conclusion and Recommendations 14

Key Benefits Recap 14

Recommendation 15

Page 2 of 14



Executive Summary

DocuPal Demo, LLC proposes to upgrade Acme, Inc's Symfony framework from
version 4.4 to version 6. This upgrade focuses on providing enhanced security,
improved performance, and access to the newest Symfony features. The goal is to
deliver a more robust and efficient platform, reducing long-term maintenance costs.

Key Benefits

The upgrade will provide ACME-1 with the latest security patches, resulting in a
more secure application. Performance improvements will lead to faster response
times and a better user experience. Access to new features will allow ACME-1 to
leverage the latest advancements in the Symfony framework.

Project Overview

The upgrade project is expected to take approximately 3 months. A phased
deployment approach will be utilized to minimize downtime. This strategy ensures
a smooth transition with minimal disruption to ACME-1's operations.

Current Environment Assessment

The current project operates on Symfony version 4.4. This version, while stable, is
nearing its end-of-life, which means it will soon no longer receive security updates
or bug fixes from Symfony.

Key Components

The project relies on several core Symfony components and third-party bundles.
These include:

Doctrine ORM for database interaction.
Twig for templating.
The Symfony Security component for authentication and authorization.
A number of custom-developed bundles specific to ACME-1's business needs.

Page 3 of 14



Performance and Security

We have identified some performance bottlenecks within the application. These are
likely due to a combination of factors, including inefficient database queries and
outdated caching strategies. Additionally, some security practices are not aligned
with current recommended standards, potentially exposing the application to
vulnerabilities.

Codebase Health

The codebase exhibits a moderate level of technical debt. This is a result of
accumulated changes and quick fixes implemented over time. Refactoring is
necessary to improve code maintainability, readability, and overall system stability.
Addressing this technical debt will also make future upgrades and feature additions
easier to implement.

Upgrade Considerations

Upgrading from Symfony 4.4 to 6 will require careful consideration of several
factors:

Compatibility: We must assess the compatibility of existing bundles and
custom code with Symfony 6.
Dependencies: Updates to third-party libraries may be necessary to ensure
compatibility with the new Symfony version.
Deprecations: Symfony 6 removes features that were deprecated in earlier
versions. We will need to refactor any code that uses these deprecated features.

Upgrade Scope and Objectives

The primary objective of this project is to upgrade ACME-1’s existing Symfony
framework from version 4.4 to version 6.4. This upgrade will ensure that ACME-1
benefits from the latest features, performance improvements, and security patches
offered by Symfony. Symfony 6.4 also provides long-term support (LTS),
guaranteeing ongoing maintenance and security updates.

Upgrade Scope

The scope of this upgrade encompasses the following:

Page 4 of 14



Core Framework Upgrade: Upgrading the core Symfony framework to version
6.4.
Essential Bundle Updates: Updating essential third-party bundles to versions
compatible with Symfony 6.4.
Security Patches: Applying all necessary security patches to ensure the
application is secure.
Dependency Updates: Updating all project dependencies to compatible
versions.

The upgrade excludes major feature additions and updates to non-essential
bundles. These can be addressed in subsequent projects.

Objectives

The key objectives of this Symfony upgrade are:

Enhanced Security: Mitigate potential security vulnerabilities by leveraging
the latest security features and patches available in Symfony 6.4.
Improved Performance: Enhance application performance through the
performance improvements incorporated in Symfony 6.4.
Long-Term Support: Ensure ongoing support and maintenance by migrating
to a long-term support (LTS) version of Symfony.
Code Modernization: Refactor deprecated features to align with current
Symfony best practices.

Milestones and Deliverables

The critical milestones and deliverables for this project include:

Code Assessment: A thorough assessment of the existing codebase to identify
compatibility issues and required updates.
Dependency Updates: Updating project dependencies to ensure compatibility
with Symfony 6.4.
Testing: Comprehensive testing of the upgraded application to ensure stability
and functionality.
Deployment: Deployment of the upgraded application to the production
environment.

Page 5 of 14



Version Compatibility and Dependency
Analysis

The upgrade from Symfony 4.4 to Symfony 6 introduces several compatibility
considerations. We need to address deprecated features, changes in form handling,
and adjustments to security configurations. Thorough analysis of these areas will
ensure a smooth transition and prevent unexpected issues.

Compatibility Issues

Symfony 6 includes changes that impact existing Symfony 4.4 applications.
Specifically, we've identified the following areas requiring attention:

Deprecated Features: Symfony 6 removes features marked as deprecated in
version 4.4. We must refactor code using these features to align with the new
standards. This mainly concerns form handling and security settings.
Form Handling: The way Symfony handles forms has evolved. We need to
update our form classes and templates to comply with the new form
component.
Security Configurations: Security configurations require review and potential
updates to match Symfony 6's security system.

Dependency Updates

Several third-party bundles and libraries currently used by ACME-1 will need
updates or replacements to function correctly with Symfony 6. These include:

API Client Libraries: We will check the compatibility of all API client libraries
and update them to versions that support Symfony 6.
Monitoring Tools: We will ensure our monitoring tools are compatible with
Symfony 6 to maintain proper system oversight.

Refactoring Efforts

Refactoring deprecated features is a key part of the upgrade process. This involves:

Identifying all instances of deprecated code.
Replacing them with the recommended alternatives in Symfony 6.

Page 6 of 14



Thoroughly testing the refactored code to ensure functionality.

Testing Strategy

We will perform comprehensive testing to confirm compatibility and stability after
the upgrade:

Unit Tests: To verify the correctness of individual components.
Integration Tests: To ensure different parts of the system work together
correctly.
Functional Tests: To validate that the application behaves as expected from a
user's perspective.
End-to-End Tests: To simulate real-world scenarios and confirm the entire
system functions correctly.

Risk Assessment and Mitigation

The Symfony 4.4 to 6 upgrade introduces several potential risks that require careful
consideration and proactive mitigation strategies. We have identified key areas of
concern and outlined our plans to address them.

Technical Risks

Code Compatibility: A primary risk involves code compatibility between
Symfony versions. Code written for 4.4 may not function correctly in version 6
due to deprecated features or changes in core functionalities.

Mitigation: We will conduct a thorough code review and use automated
tools to identify and address compatibility issues. Refactoring will be
performed where necessary, adhering to Symfony 6 best practices.

Third-Party Bundle Conflicts: Existing third-party bundles may not be fully
compatible with Symfony 6, potentially leading to conflicts or malfunctions.

Mitigation: We will assess the compatibility of all installed bundles and
update them to versions that support Symfony 6. Alternative bundles will
be evaluated and implemented if necessary.

Unexpected Downtime: Unforeseen issues during the upgrade process could
result in unexpected downtime, impacting ACME-1's operations.

Page 7 of 14



Mitigation: We will minimize downtime through phased deployments,
scheduling upgrades during maintenance windows, and employing load
balancing techniques to distribute traffic.

Operational Risks

Service Disruption: The upgrade may temporarily disrupt services, affecting
user experience and potentially leading to data inconsistencies.

Mitigation: Phased rollouts will be employed to limit the impact of any
service disruptions. Real-time monitoring will be in place to quickly
identify and resolve any issues.

Fallback and Rollback Plans

To ensure business continuity, we have established comprehensive fallback and
rollback plans. These plans allow us to revert to the previous stable version of
Symfony (4.4) if critical issues arise during or after the upgrade.

Complete System Backup: Prior to initiating the upgrade, a complete backup of
the system, including the database and application code, will be performed.
Rollback Scripts: We will develop and test rollback scripts to automate the
process of reverting to Symfony 4.4.
Version Control: All code changes will be managed using version control (Git),
enabling us to revert to previous versions of the application.

Monitoring and Communication

During the upgrade process, we will closely monitor system performance and
application stability using real-time monitoring tools. Frequent status updates will
be provided to ACME-1 stakeholders, ensuring transparency and proactive
communication. This includes immediate notification of any identified risks and
mitigation efforts.

Upgrade Implementation Plan

The Symfony 4.4 to 6 upgrade will proceed through a series of carefully planned
phases to ensure a smooth transition and minimize disruption. Our team will
execute each phase with precision, leveraging industry-standard tools and
methodologies.

Page 8 of 14



Upgrade Phases

1. Assessment: We begin by thoroughly assessing the current Symfony 4.4
application. This includes a detailed review of the codebase, third-party bundle
dependencies, and existing infrastructure. The goal is to identify potential
compatibility issues, deprecated features, and areas requiring refactoring.

2. Planning: Based on the assessment, we will develop a comprehensive upgrade
plan. This plan will outline the specific steps required for the upgrade,
including timelines, resource allocation, and risk mitigation strategies. We will
define clear milestones and deliverables for each phase.

3. Development: This phase involves the actual upgrade of the Symfony
framework. We will use tools like Rector and the Symfony Upgrade Tool to
automate many of the necessary code changes. Deprecated features will be
refactored, and third-party bundles will be updated or replaced as needed. John
Smith (Lead Developer) will oversee all code modifications.

4. Testing: Rigorous testing is crucial to ensure the stability and functionality of
the upgraded application. We will employ a combination of automated unit and
integration tests to identify and resolve any issues. Jane Doe (QA Engineer) will
lead the testing efforts. CI/CD pipelines will be used to automate the testing
process and ensure continuous integration.

5. Deployment: Once the application has been thoroughly tested, we will proceed
with deployment to the production environment. Peter Jones (DevOps) will
manage the deployment process, leveraging CI/CD pipelines for automated and
efficient deployment.

6. Monitoring: After deployment, we will closely monitor the application's
performance and stability. We will use monitoring tools to identify and address
any issues that may arise.

Step-by-Step Activities

The upgrade execution involves the following key activities:

1. Codebase Analysis: A detailed scan of the existing codebase to identify
deprecated features, compatibility issues, and potential conflicts.

Page 9 of 14



2. Dependency Updates: Updating or replacing third-party bundles to ensure
compatibility with Symfony 6.

3. Configuration Changes: Modifying configuration files to align with the new
framework version.

4. Database Migrations: Executing database migrations to ensure data integrity
and compatibility.

5. Functional Testing: Performing end-to-end testing to verify that all
application features are working as expected.

6. Performance Optimization: Tuning the application for optimal performance
in the new environment.

7. Security Audits: Conducting security audits to identify and address any
potential vulnerabilities.

Timeline and Milestones

Tools and Techniques

We will utilize the following tools and techniques to ensure a smooth migration:

Page 10 of 14



Rector: For automated code refactoring and upgrades.
Symfony Upgrade Tool: To assist with the upgrade process and identify
potential issues.
Automated Testing: Unit, integration, and functional tests to ensure code
quality and stability.
CI/CD Pipelines: For automated building, testing, and deployment.

Testing Strategy

Our testing strategy is designed to ensure a smooth and reliable Symfony upgrade
for ACME-1. We will employ a multi-faceted approach, incorporating various testing
methodologies to validate the upgraded application's functionality, performance,
and stability.

Test Types

We will conduct the following types of tests:

Unit Tests: To verify individual components and functions.
Integration Tests: To confirm the interactions between different parts of the
system.
Acceptance Tests: To validate that the application meets the defined
requirements.
Performance Tests: To assess the application's speed and responsiveness.

Backward Compatibility

To verify backward compatibility, we will use a combination of functional and end-
to-end tests. User acceptance testing (UAT) will also play a key role in ensuring the
upgraded application works as expected from the user's perspective.

Automation Tools

We will leverage the following automation tools to streamline the testing process:

PHPUnit: For unit and integration testing.
Behat: For behavior-driven development and acceptance testing.
Blackfire.io: For performance testing and profiling.

Page 11 of 14



Bug Tracking and Resolution

All identified bugs and regressions will be meticulously tracked using Jira. We will
also implement automated bug tracking to improve the efficiency of issue detection
and reporting. Daily stand-up meetings will be held to discuss the status of bug
fixes and ensure timely resolution.

Performance and Security
Considerations

The Symfony upgrade from version 4.4 to 6 is expected to deliver significant
enhancements in both performance and security. We anticipate resolving existing
performance bottlenecks related to database queries and inefficient caching
mechanisms. The upgrade incorporates improved CSRF protection and stricter
security defaults, bolstering the application's defenses against potential threats.

Expected Improvements

Post-upgrade, Acme, Inc. can expect improvements in application speed and
response times due to the optimized framework. The new caching strategies will
reduce server load, leading to a more responsive user experience.

Security Compliance

To ensure security compliance, we will implement regular security audits, update
security configurations, and conduct penetration testing. These measures will
validate the effectiveness of the new security features and identify any potential
vulnerabilities.

Post-Upgrade Monitoring

We will implement comprehensive monitoring post-upgrade. This includes
application performance monitoring to track response times and identify
bottlenecks, security monitoring to detect and respond to threats, and error
tracking to quickly address any issues that arise.

Page 12 of 14



Documentation and Training

To ensure a smooth transition and effective utilization of Symfony 6, we will update
existing documentation and provide comprehensive training. This will equip your
team with the necessary knowledge and skills.

Documentation Updates

We will update the following documentation to reflect the changes introduced in
Symfony 6:

API documentation
Developer guides
Deployment procedures

These updates will ensure that your team has access to accurate and up-to-date
information.

Training Programs

We will deliver training to your development and operations teams through a
combination of methods:

Workshops: Hands-on sessions to familiarize the teams with new features and
functionalities.
Documentation: Comprehensive documentation covering all aspects of the
upgrade and new features.
One-on-one Mentoring: Personalized guidance to address individual
questions and challenges.

Coding Standards

We will introduce new coding standards and guidelines. These will focus on security
best practices and overall code quality improvements. The knowledge transfer will
be managed through documentation, training sessions, and code reviews. This
multifaceted approach ensures your team is well-prepared to maintain and extend
the upgraded application.

Page 13 of 14



Conclusion and Recommendations

The proposed upgrade from Symfony 4.4 to Symfony 6 presents ACME-1 with
significant advantages. These include enhanced security measures, improved
application performance, and access to the latest framework features. Addressing
technical debt through this upgrade will streamline future development efforts.

Key Benefits Recap

Benefit Description

Enhanced Security
Protection against vulnerabilities with the latest security
patches.

Improved
Performance

Optimized code execution leading to faster response times.

New Features
Access to modern tools and functionalities for enriched
development.

Reduced Tech Debt
Streamlined codebase reducing complexity and maintenance
overhead.

Recommendation

While continuing with Symfony 4.4 using extended support is technically feasible,
we strongly advise against this approach. The long-term benefits of upgrading to
Symfony 6 far outweigh the effort involved. We recommend ACME-1 approve this
proposal to ensure a secure, efficient, and modern application environment. Post-
approval, the immediate next steps involve scheduling a kickoff meeting, finalizing
the project plan, and initiating a comprehensive code assessment.

Page 14 of 14


