
Table of Contents
Introduction 3

Importance of Symfony Performance Optimization 3

Proposal Objectives 3

Expected Outcomes 3

Current Performance Assessment 3

Key Bottlenecks 4

Performance Metrics 4

Caching Strategies 4

HTTP Cache 5

Doctrine Result Cache 5

Redis for Session Storage 5

Expected Cache Hit Rate Improvement 5

Database Optimization 5

Query Optimization 6

Doctrine ORM Configuration 6

Connection Pooling 6

Code and Architecture Improvements 6

Code Refactoring 7

Service Container Optimization 7

Asynchronous Task Processing 7

Front-End Performance Enhancements 8

Asset Optimization and Management 8

Twig Caching 8

HTTP/2 and GZIP Compression 8

Browser Caching 8

Measurable Improvements 9

Load Testing and Benchmarking 9

Testing Tools 9

Scenario Design 9

Key Performance Indicators (KPIs) 9

Testing Phases 10

Metrics and Reporting 10

Scalability and Infrastructure Considerations 10

Page 1 of 12



Infrastructure Upgrades 10

Content Delivery Network (CDN) Integration 11

Asynchronous Processing 11

Implementation Roadmap 11

Phased Optimization Plan 11

Resource Allocation 12

Progress Measurement and Reporting 12

Conclusion and Recommendations 12

Next Steps 12

Page 2 of 12



Introduction

Importance of Symfony Performance Optimization

For ACME-1, the performance of its Symfony applications is critical. It directly
influences user experience. Faster applications lead to higher user satisfaction.
Good performance also improves SEO rankings. This can drive more organic traffic
to ACME-1's sites. Improved speed boosts conversion rates, turning more visitors
into customers. Finally, efficient applications reduce server load. This translates to
lower infrastructure costs for ACME-1.

Proposal Objectives

Docupal Demo, LLC presents this proposal with key objectives in mind. Our primary
goal is to improve the speed of ACME-1's Symfony applications. We aim to reduce
server load through efficient code and caching strategies. Enhancing scalability is
another important objective. This ensures the applications can handle increasing
traffic without performance degradation. Ultimately, we strive to provide a better
user experience for ACME-1's customers.

Expected Outcomes

This performance optimization initiative will benefit all stakeholders at ACME-1.
This document provides a clear roadmap for achieving significant performance
gains. We will outline specific improvements and detail the resources required for
implementation. By following this plan, ACME-1 can expect faster applications,
reduced costs, and a more satisfied user base.

Current Performance Assessment

Our analysis of ACME-1's Symfony application reveals several areas needing
improvement. We used both the Symfony Profiler and Blackfire.io to gather detailed
performance data. These tools allowed us to identify specific bottlenecks and areas
of concern.

Page 3 of 12



Key Bottlenecks

Our profiling identified the following main performance bottlenecks:

Slow Database Queries: Inefficiently written or un-indexed database queries
significantly impact response times.
Inefficient Caching: The application isn't fully leveraging caching
mechanisms to reduce database load and improve speed.
Unoptimized Assets: Large image and JavaScript files contribute to slow page
load times. These assets are not properly minified or compressed.
Bloated Service Container: The Symfony service container contains many
unnecessary or unused services, increasing application startup time and
memory usage.

Performance Metrics

Current performance metrics lag behind industry benchmarks for similar
applications. We observed slower page load times and higher server response times.
The data collected from Symfony Profiler and Blackfire.io supports these findings.

The chart above illustrates the difference between ACME-1's current performance
and industry benchmarks. The Page Load Time is currently at 2.5 seconds, while the
benchmark is 1.2 seconds. Server Response Time is at 0.8 seconds, compared to the
benchmark of 0.3 seconds. These metrics highlight the need for optimization.

Caching Strategies

Effective caching is vital for optimizing the performance of ACME-1's Symfony
application. We will implement and enhance several caching layers to reduce server
load, accelerate database access, and improve session handling. Our approach
includes HTTP caching, Doctrine result caching, and Redis for session storage. We
anticipate a 50% reduction in page load times and a 30% decrease in server
response times through these optimizations.

Page 4 of 12



HTTP Cache

Symfony's HTTP cache mechanism will be configured to cache responses at various
levels, including the server and the client's browser. This reduces the number of
requests that reach the application, significantly decreasing server load and
improving response times. We will use Symfony's built-in reverse proxy or a
dedicated HTTP accelerator like Varnish, configured to cache static and dynamic
content based on defined rules.

Doctrine Result Cache

Doctrine's result cache will be employed to store the results of frequently executed
database queries. This prevents redundant database hits, leading to faster data
retrieval and reduced database server load. We will configure the result cache to use
a fast storage adapter, such as Redis or Memcached, for optimal performance. This
will be applied strategically to the most frequently accessed data sets within ACME-
1's application.

Redis for Session Storage

We will transition ACME-1's session storage from the default file-based storage to
Redis. Redis offers significantly faster read and write operations compared to
traditional file-based sessions. This reduces session access latency, leading to a
more responsive user experience, especially for authenticated users.

Expected Cache Hit Rate Improvement

The implementation of these caching strategies is expected to significantly improve
cache hit rates across the application. The following chart illustrates the anticipated
improvements:

Database Optimization

We will optimize your database to reduce delays and improve overall performance.
Our focus will be on query optimization and Doctrine ORM configuration.

Page 5 of 12



Query Optimization

We identified that queries fetching product details and user profiles are causing
significant delays. To address this, we will analyze these queries and implement the
following:

Index Optimization: We will add or modify indexes to speed up data retrieval.
Doctrine migrations will manage index changes.
Query Rewriting: We will rewrite slow queries to be more efficient. This
includes simplifying complex joins and using more selective WHERE clauses.
Caching: We will implement caching strategies to reduce database load for
frequently accessed data.

Doctrine ORM Configuration

We will apply Doctrine ORM best practices to improve performance:

Lazy Loading: We will ensure lazy loading is properly configured to avoid
unnecessary data fetching. This means related entities are only loaded when
needed.
Efficient DQL: We will review and optimize your Doctrine Query Language
(DQL) queries. This includes avoiding unnecessary SELECT fields and using
proper joins.
N+1 Problem: We will identify and eliminate N+1 query problems. This
commonly involves eager loading related entities using JOIN FETCH in DQL.

Connection Pooling

We will configure connection pooling in your database settings. This will reduce the
overhead of establishing new database connections for each request. Connection
pooling maintains a pool of open connections that can be reused, improving
response times.

Code and Architecture Improvements

We propose several improvements to ACME-1's codebase and architecture to boost
performance. These changes focus on refactoring inefficient code, optimizing the
service container, and introducing asynchronous task processing.

Page 6 of 12



Code Refactoring

Parts of the codebase, especially those involved in complex data transformations
and legacy components, need refactoring. We will identify and rewrite sections that
contribute to performance bottlenecks. This includes:

Simplifying complex algorithms.
Removing redundant code.
Adhering to SOLID principles for better maintainability and performance.
Updating legacy code to use modern Symfony features.

Service Container Optimization

The Symfony service container plays a crucial role in application performance.
Optimizing its configuration can lead to significant gains. Our approach includes:

Reducing the number of services instantiated on each request.
Using lazy loading for services that are not always needed.
Optimizing service dependencies to avoid circular references and unnecessary
object creation.
Profiling service container usage to identify areas for improvement.

Asynchronous Task Processing

Certain long-running tasks can negatively impact response times. We suggest
moving these tasks to asynchronous queues. This would involve:

Identifying suitable tasks for asynchronous processing (e.g., sending emails,
generating reports).
Implementing a message queue system (e.g., RabbitMQ, Redis).
Creating worker processes to handle tasks from the queue.
Monitoring the queue and worker processes for performance and reliability.

By implementing these changes, ACME-1 can expect a more responsive and scalable
application.

Page 7 of 12



Front-End Performance Enhancements

Acme, Inc will benefit from several front-end performance enhancements. These
improvements will focus on optimizing asset delivery and browser-side caching.
The goal is to reduce page load times and improve user experience.

Asset Optimization and Management

We will use Webpack to optimize and manage front-end assets. This includes
minifying CSS and JavaScript files to reduce their size. Image optimization
techniques will also be applied to reduce image file sizes without sacrificing quality.
A Content Delivery Network (CDN) will distribute these optimized assets. This will
ensure faster delivery to users, regardless of their geographic location.

Twig Caching

Twig caching mechanisms will be implemented to reduce server load. By caching
frequently accessed templates, the system avoids unnecessary re-compilation. This
results in faster response times.

HTTP/2 and GZIP Compression

Enabling HTTP/2 will allow for more efficient delivery of assets. HTTP/2 supports
multiplexing, header compression, and server push. GZIP compression will further
reduce the size of text-based assets, such as HTML, CSS, and JavaScript files.

Browser Caching

Leveraging browser caching will allow users' browsers to store static assets locally.
This reduces the need to download the same assets repeatedly on subsequent visits.
We will configure appropriate cache headers to control how long browsers store
these assets.

Measurable Improvements

We expect these front-end optimizations to result in faster page load times. This
will lead to reduced bounce rates and improved SEO scores for ACME-1.

Page 8 of 12



This line chart illustrates the anticipated improvement in page load times (in
seconds) after implementing the proposed optimizations. The "Initial" state
represents the current load time, while "Optimized" reflects the expected
performance after the enhancements.

Load Testing and Benchmarking

To ensure the success of our Symfony performance optimization efforts for ACME-1,
we will conduct thorough load testing and benchmarking. These tests will validate
the effectiveness of the implemented optimizations under realistic conditions.

Testing Tools

We will employ industry-standard tools, specifically JMeter and Gatling, for load
testing. These tools allow us to simulate a high volume of concurrent users and
transactions, providing valuable insights into the application's behavior under
stress.

Scenario Design

Our testing scenarios will accurately mirror real-world usage patterns, particularly
during peak hours. This includes simulating typical user journeys and common
actions within the ACME-1 application. By replicating these conditions, we can
identify potential bottlenecks and areas for further improvement.

Key Performance Indicators (KPIs)

The success of our optimization efforts will be measured against several Key
Performance Indicators (KPIs):

Page Load Time: The time it takes for a page to fully load in the browser.
Server Response Time: The time it takes for the server to respond to a request.
Error Rate: The percentage of requests that result in errors.

Testing Phases

We anticipate the following testing phases:

Page 9 of 12



1. Baseline Testing: Establish initial performance metrics before any
optimizations are applied.

2. Optimization Implementation: Implement the agreed-upon performance
optimization strategies.

3. Post-Optimization Testing: Conduct load testing after optimizations to
measure improvements.

4. Regression Testing: Ensure new changes or updates do not negatively impact
performance.

Metrics and Reporting

We will provide detailed reports on throughput, response times, and concurrency
metrics across all testing phases. The following bar chart illustrates the type of
metrics to be presented:

Scalability and Infrastructure
Considerations

To handle increased traffic and ensure optimal performance for ACME-1, we
recommend several infrastructure enhancements. These improvements focus on
scalability, redundancy, and efficient resource utilization.

Infrastructure Upgrades

A foundational step involves upgrading the current server infrastructure. This could
mean transitioning to a more powerful server with increased CPU, memory, and
storage capacity. We also suggest implementing load balancing to distribute traffic
across multiple servers. Load balancing prevents any single server from becoming a
bottleneck. This approach ensures high availability and responsiveness, even
during peak load times.

Content Delivery Network (CDN) Integration

Integrating a Content Delivery Network (CDN) is crucial for delivering static assets
quickly and efficiently. CDNs store copies of your website's content on servers
located around the world. This allows users to download content from a server

Page 10 of 12



closer to their location, reducing latency and improving page load times. We
recommend Cloudflare and Akamai as robust CDN solutions. They both offer
extensive global networks and advanced caching capabilities.

Asynchronous Processing

Implementing asynchronous queues and message buses can significantly improve
performance. These tools allow us to offload time-consuming tasks, such as
sending emails or processing large data sets, from the main request cycle. This
prevents these tasks from blocking user requests. By processing these tasks in the
background, we can maintain a responsive user experience, even when handling
complex operations.

Implementation Roadmap

Our approach to optimizing ACME-1's Symfony application involves a phased
implementation. This strategy allows for focused improvements and continuous
monitoring of progress. Each phase has defined timelines, resource requirements,
and measurable outcomes.

Phased Optimization Plan

We will execute the optimization in three key phases:

1. Caching Implementation (2 weeks): This initial phase focuses on leveraging
Symfony's caching mechanisms to reduce database load and improve response
times.

2. Database Optimization (3 weeks): We will analyze database queries, optimize
indexes, and implement other database-level improvements to enhance data
retrieval speed.

3. Code Refactoring (4 weeks): This phase involves reviewing and refactoring
inefficient code segments to improve overall application performance.

Resource Allocation

Successful implementation requires the following resources:

Page 11 of 12



Developer Time: Our team of experienced Symfony developers will dedicate
their time to implementing the necessary changes.
Server Resources: We will require access to ACME-1's server infrastructure for
testing and deployment.
Profiling Tools: Licenses for profiling tools will be needed to identify
performance bottlenecks.

Progress Measurement and Reporting

We will track progress using performance monitoring tools. These tools will provide
real-time data on key metrics such as response time, database query execution time,
and server resource utilization. We will deliver weekly progress reports, including
performance metrics and key achievements. These reports will keep ACME-1
informed of our progress and any challenges encountered.

Conclusion and Recommendations

This performance optimization proposal outlines key strategies for enhancing
ACME-1's Symfony application. Improving application speed, cutting operational
costs, and raising user satisfaction are all achievable. Caching mechanisms,
database optimization, and code refactoring are the core components of this plan.

Next Steps

We advise scheduling a kickoff meeting as the immediate next step. This will allow
us to align on priorities, allocate resources effectively, and begin implementing the
recommended actions promptly. We at Docupal Demo, LLC are excited to partner
with ACME-1 to deliver these significant improvements.

Page 12 of 12


