
Table of Contents
Introduction 3

Background 3

Purpose 3

Objectives 3

Current State Analysis 3

Performance Bottlenecks 4

Build Analysis 4

Optimization Strategies 4

Code Optimization 5

State Management Optimization 5

Rendering Optimization 5

Resource Optimization 5

Build Process Improvement 6

Optimizing Build Efficiency 6

Dependency Management 6

Automation and CI/CD 6

Performance Profiling and Monitoring 7

Profiling Tools 7

Key Performance Indicators (KPIs) 7

Real-time Monitoring Metrics 8

Battery Consumption Optimization 8

Animation Optimization 8

Background Task Management 8

Energy Consumption Breakdown 8

UI and Animation Optimization 9

Animation Optimization 9

Widget Rebuild and Layer Optimization 10

UI Responsiveness 10

Expected Frame Rate Improvement 10

Risks and Mitigation 10

Mitigation Strategies 11

Fallback Plans 11

Conclusion and Next Steps 11

Page 1 of 12



Immediate Actions 11

Progress Tracking 12

Future Considerations 12

Page 2 of 12



Introduction

Background

Docupal Demo, LLC is presenting this Flutter Optimization Proposal to Acme, Inc.
This document outlines our strategy to improve the performance of ACME-1's
Flutter application. Our goal is to deliver a more responsive and efficient user
experience.

Purpose

This proposal addresses key aspects of Flutter development. We aim to reduce build
times and the overall application size. We will also focus on enhancing UI rendering
performance and optimizing state management. Finally, we intend to minimize
battery consumption.

Objectives

The primary objective is to provide actionable recommendations. These will enable
ACME-1's development team to optimize their Flutter application. This proposal is
tailored for developers, project managers, and stakeholders at Acme, Inc. It offers a
clear path towards a more efficient and performant application.

Current State Analysis

The current state analysis focuses on the performance and build characteristics of
ACME-1’s Flutter application. This assessment uses data gathered from Flutter
DevTools and Android Studio Profiler.

Performance Bottlenecks

Initial profiling reveals several areas within the application that contribute to
performance bottlenecks. These include:

Page 3 of 12



Inefficient Widget Rebuilds: Unnecessary widget rebuilds are causing
increased CPU usage, particularly in sections with complex UIs and frequently
updating data.
Suboptimal Image Loading: Loading large images without proper
optimization leads to increased memory consumption and longer loading
times, negatively impacting the user experience.
Lack of Lazy Loading: List views with large datasets are rendering all items at
once, resulting in slow initial load times and increased memory footprint.
Unoptimized Network Requests: Some network requests are performed
synchronously on the main thread, causing UI freezes.

Build Analysis

The build analysis provides insights into the app's build times and size.

Metric Value

Average Build Time 65 seconds

App Size (Android) 25 MB

App Size (iOS) 30 MB

The average build time of 65 seconds indicates potential areas for improvement in
the build process. Similarly, the app size of 25 MB (Android) and 30 MB (iOS) can be
reduced through techniques like code shrinking, asset optimization, and dynamic
feature delivery.

The bar charts visualize the build times and app sizes, offering a clear overview of
the current state. Further investigation into build configurations and dependencies
is needed to identify specific optimization opportunities.

Optimization Strategies

To enhance ACME-1's Flutter application performance, Docupal Demo, LLC will
implement a series of targeted optimization strategies. These strategies address key
areas such as code efficiency, state management, UI rendering, and resource
utilization.

Page 4 of 12



Code Optimization

We will improve code efficiency by following Flutter best practices. This includes
using efficient data structures, such as HashSet for fast lookups and SplayTreeMap
for sorted data. We will also minimize widget rebuilds by using const constructors
for immutable widgets and shouldRepaint to prevent unnecessary repaints. Unused
code will be removed through a process of code review and static analysis. Code-
splitting techniques will be used to reduce initial app size and improve load times.
Asset usage will be optimized by using appropriate image formats (e.g., WebP) and
compressing assets without sacrificing quality.

State Management Optimization

Efficient state management is crucial for app performance. We will leverage
Provider or Riverpod, depending on ACME-1's project requirements and existing
architecture. These solutions allow for granular state updates, preventing
unnecessary widget rebuilds across the application. We will avoid anti-patterns like
global state and ensure state updates are localized to the widgets that depend on
them. We will also use ChangeNotifierProvider to manage the application's state.

Rendering Optimization

To improve UI responsiveness, we will focus on rendering optimizations. Overdraw
will be reduced by using techniques like ClipRect and Opacity widgets effectively.
Complex UIs will be simplified by breaking them down into smaller, more
manageable widgets. We will also use efficient rendering techniques such as
ListView.builder for large lists and CustomPaint for complex drawing operations.
These widgets help only render what is visible on the screen.

Resource Optimization

Optimizing resource usage is vital for reducing app size and improving
performance. Image assets will be optimized by using appropriate resolutions and
compression techniques. We will minimize the use of large image assets. We will
also use the appropriate image format. Unnecessary dependencies will be removed
to reduce app size. Network requests will be optimized by using caching and
compression techniques.

Page 5 of 12



Build Process Improvement

To improve ACME-1's build and deployment speed, we will implement several key
strategies. These strategies focus on optimizing Flutter's build modes, managing
dependencies efficiently, and utilizing cloud build services.

Optimizing Build Efficiency

Flutter offers different build modes suited for various stages of development. We
will leverage these modes to reduce build times. For example, debug builds will be
used during active development for their fast hot reload capabilities. Release builds
will be employed for generating optimized, production-ready code. We will also
ensure effective use of hot reload and incremental builds to allow developers to
quickly test and iterate on changes, minimizing delays.

Dependency Management

Inefficient dependency management can significantly slow down build times. We
will analyze ACME-1's current dependencies and identify any unnecessary or
redundant packages. We will then update or remove these to streamline the build
process. Furthermore, we will implement a strategy for managing transitive
dependencies to avoid conflicts and reduce the overall size of the application.

Automation and CI/CD

Automating build processes is crucial for reducing manual errors and accelerating
deployment. We will integrate automated testing, linting, and code analysis into
ACME-1's CI/CD pipeline. This will ensure code quality and consistency. By
leveraging cloud build services, we can distribute the build process across multiple
machines, significantly reducing build times.

Performance Profiling and Monitoring

Effective performance profiling and monitoring are crucial for identifying and
addressing bottlenecks within the ACME-1 Flutter application. We will employ a
suite of industry-standard tools to gain deep insights into the app's behavior. These

Page 6 of 12



tools will allow us to proactively optimize performance and ensure a smooth user
experience.

Profiling Tools

We recommend using the following profiling tools:

Flutter DevTools: A powerful suite of performance analysis and debugging
tools directly integrated into the Flutter SDK. It allows real-time inspection of
the UI, CPU usage, memory allocation, and network activity.

Android Studio Profiler: Provides comprehensive profiling capabilities
specifically tailored for Android devices. It offers detailed insights into CPU,
memory, network, and energy consumption.

Instruments (iOS): Apple's performance analysis tool for iOS devices. It
provides a wide range of instruments for monitoring CPU usage, memory
leaks, disk activity, and graphics performance.

Key Performance Indicators (KPIs)

We will continuously monitor the following KPIs to assess the performance of the
ACME-1 application:

Frame Rates: Maintaining a consistent 60 FPS (frames per second) is essential
for a smooth and responsive user interface. Frame rate drops indicate
performance issues that require investigation.

Memory Usage: Excessive memory consumption can lead to app crashes and
performance degradation. We will monitor memory allocation and identify
potential memory leaks.

CPU Usage: High CPU usage can drain the battery and slow down the
application. We will analyze CPU usage patterns to identify performance-
intensive operations.

Battery Consumption: Optimizing battery consumption is crucial for mobile
applications. We will monitor battery usage to identify areas where we can
reduce energy consumption.

Page 7 of 12



Real-time Monitoring Metrics

Ongoing monitoring data will guide our optimization efforts. By pinpointing
performance bottlenecks, we can focus on targeted improvements.

Battery Consumption Optimization

Battery consumption is a critical factor for user satisfaction. We will focus on
minimizing energy use throughout the ACME-1 application.

Animation Optimization

Animations can significantly impact battery life if not handled efficiently. We will
use AnimatedBuilder for complex animations. This widget rebuilds only the parts of
the UI that change, instead of the entire screen. This targeted approach reduces
unnecessary rendering and lowers power consumption.

Background Task Management

Background tasks also contribute to battery drain. We will implement throttling
techniques. Throttling limits the frequency of background processes. This ensures
that tasks run only when necessary. It prevents excessive battery usage when the
app is not actively used.

Energy Consumption Breakdown

Here’s a projected breakdown of energy consumption by app module:

Page 8 of 12



The pie chart illustrates the relative energy consumption of each module. UI
rendering consumes the most energy. We will focus on optimizing UI rendering. We
will also carefully manage network requests, background tasks, and location
services. Our goal is to reduce their impact on battery life.

UI and Animation Optimization

Optimizing the user interface (UI) and animations is essential for delivering a
smooth and responsive user experience in the ACME-1 application. This section
details strategies to improve UI fluidity and animation performance.

Animation Optimization

Inefficient animations can significantly degrade performance. We will address this
by:

Simplifying Complex Animations: Reducing the complexity of animations
minimizes the computational load on the device.
Reducing setState Usage: Excessive calls to setState trigger unnecessary
widget rebuilds. We will minimize these calls by using state management
solutions and targeted updates.

Page 9 of 12



Optimizing Opacity: Inefficient use of opacity can lead to performance
bottlenecks. We will optimize opacity transitions and avoid unnecessary
opacity changes.

Widget Rebuild and Layer Optimization

Unnecessary widget rebuilds and inefficient layer usage can also impact
performance. We will focus on:

Reducing Widget Rebuilds: Identifying and preventing unnecessary widget
rebuilds will improve performance. We will use techniques like const
constructors and shouldRepaint to minimize rebuilds.
Optimizing Layer Usage: Utilizing RepaintBoundary strategically can isolate
areas of the UI that need to be repainted, preventing unnecessary repaints of
the entire screen.

UI Responsiveness

Maintaining a responsive UI is crucial for a positive user experience. We will
implement the following best practices:

Keeping the UI Simple: Simplifying the UI design reduces the rendering
workload.
Using Asynchronous Operations: Performing long-running tasks
asynchronously prevents blocking the main thread and ensures the UI remains
responsive.
Avoiding Blocking the Main Thread: We will identify and eliminate any
operations that block the main thread, ensuring smooth UI interactions.

Expected Frame Rate Improvement

The following chart illustrates the expected improvement in frame rates after
implementing the optimization strategies:

Risks and Mitigation

The proposed Flutter optimization carries inherent risks. These risks primarily
involve increased code complexity. Refactoring and introducing new optimization
techniques can make the codebase harder to understand and maintain. This

Page 10 of 12



complexity raises the potential for introducing new bugs during the optimization
process.

Mitigation Strategies

We will implement several strategies to mitigate these risks. Comprehensive testing
is paramount. This includes unit tests, integration tests, and end-to-end tests.
These tests will help catch regressions and new bugs early in the development cycle.
Continuous integration (CI) will automate the testing process. This ensures that
every code change is automatically tested. Monitoring tools will track application
performance in real-time. This allows us to quickly identify and address any
performance regressions.

Fallback Plans

We will develop rollback plans for all code changes. If a new optimization introduces
a critical bug, we can quickly revert to the previous stable version. We will also
establish fallback plans for infrastructure updates. This will minimize downtime
and ensure business continuity. These plans will provide options to revert to the
previous infrastructure configuration if issues arise.

Conclusion and Next Steps

Following acceptance of this proposal, Docupal Demo, LLC will prioritize
implementing the code-level optimizations outlined within this document. We will
also establish comprehensive performance monitoring to ensure the effectiveness
of these improvements.

Immediate Actions

The initial focus will be on the most impactful optimizations to deliver quick wins
and demonstrate the value of our approach. This includes addressing the identified
bottlenecks in ACME-1's Flutter application.

Page 11 of 12



Progress Tracking

We will closely track key performance indicators (KPIs) to measure progress against
the defined goals. Regular reports will be provided to ACME-1, detailing the
improvements achieved and any adjustments required to the optimization strategy.

Future Considerations

Looking ahead, Docupal Demo, LLC will explore advanced rendering techniques and
further optimize resource usage to achieve even greater performance gains for
ACME-1's Flutter application. This will be an ongoing process of refinement and
improvement.

Page 12 of 12


