
Table of Contents
Introduction and Objectives 3

Project Challenges 3

Optimization Goals 3

Scope 3

Current Performance Analysis and Profiling 4

Rendering Performance 4

Scripting Performance 4

Device and Platform Variance 4

Detailed Profiling Data 5

Rendering Optimization Strategies 5

Draw Call Reduction and GPU Performance 5

Addressing Rendering Overhead 6

Platform-Specific Optimizations 6

Expected Rendering Performance Improvements 7

Scripting and Code Optimization 7

Object Pooling and Caching 7

Loop and Algorithm Optimization 7

Asynchronous and Multithreaded Operations 7

Garbage Collection Reduction 8

Physics Module Optimization 8

UI Update Optimization 8

Asset Management and Memory Optimization 8

Asset Optimization Strategies 8

Memory Footprint Reduction 9

Projected Memory Usage Improvement 9

Platform-Specific Optimization Considerations 9

Mobile (Android & iOS) 10

WebGL 10

General Strategies 10

Platform API & Hardware Leveraging 11

Testing and Validation Plan 11

Performance Testing 11

Real User Scenario Simulation 11

Page 1 of 14



Success and Rollback Criteria 11

Estimated Timeline and Resource Allocation 12

Project Timeline 12

Resource Allocation 12

Potential Risks and Mitigation Strategies 13

Regression Prevention 13

Contingency Plans 13

Conclusion and Next Steps 14

Required Approvals and Resource Allocation 14

Implementation and Monitoring 14

Immediate Actions 14

Page 2 of 14



Introduction and Objectives

Docupal Demo, LLC is pleased to present this optimization proposal to ACME-1 for
their Unity project. Our team understands the importance of efficient performance
for delivering a high-quality user experience. This proposal outlines our approach
to address the current challenges and achieve significant improvements in your
project's performance across targeted platforms.

Project Challenges

ACME-1's Unity project currently faces performance bottlenecks related to:

High draw call count
Excessive garbage collection
Inefficient scripts

These issues negatively impact frame rates and overall smoothness, especially on
Android, iOS, and WebGL platforms.

Optimization Goals

The primary objective of this engagement is to optimize the Unity project,
achieving the following performance targets:

Draw Calls: Reduce the draw call count by 50%.
Garbage Collection: Decrease garbage collection frequency by 75%.
Frame Rate: Achieve a stable frame rate of 60 FPS on target devices.

Scope

This proposal focuses on optimizing ACME-1's Unity project for the following
platforms and devices:

Android: Mid-range and high-end Android devices
iOS: iPhone 8 and later models
WebGL: Modern web browsers

Page 3 of 14



Our optimization strategies will be tailored to the specific characteristics and
limitations of each platform to ensure optimal performance across the board. We
aim to deliver a smoother, more responsive, and enjoyable user experience for your
target audience.

Current Performance Analysis and
Profiling

We conducted a thorough performance analysis of the ACME-1 project using Unity
Profiler, RenderDoc, and on-device performance monitoring tools. This analysis
aimed to identify key bottlenecks and areas for optimization. The results are
detailed below.

Rendering Performance

The rendering pipeline is a significant performance bottleneck. Shadow casting
contributes heavily to this issue. Complex shaders also add to the rendering
overhead. These factors combine to reduce frame rates, especially on lower-end
devices.

Scripting Performance

Inefficient scripts impact overall performance. This includes both game logic and UI
updates. The profiler revealed specific areas where script execution time can be
improved.

Device and Platform Variance

Performance varies significantly across different devices and platforms. High-end
Android and iOS devices maintain acceptable frame rates. However, mid-range
Android devices experience a noticeable drop in performance. WebGL builds also
suffer from reduced frame rates. This suggests a need for platform-specific
optimizations.

Platform Average Frame Rate Notes

High-End Android/iOS 60 FPS Target performance

Mid-Range Android 25-30 FPS Significant frame rate drop

Page 4 of 14



Platform Average Frame Rate Notes

WebGL 20-25 FPS Requires optimization

Detailed Profiling Data

The Unity Profiler provided detailed insights into CPU and GPU usage. Memory
consumption was also monitored. We identified specific functions and assets that
contribute most to performance overhead. RenderDoc was used to analyze
rendering calls and identify shader inefficiencies. The following example shows
CPU and GPU time spent in different sections of the application.

Rendering Optimization Strategies

We will implement several rendering optimization techniques to enhance ACME-1's
performance, targeting key areas that introduce overhead. These strategies focus on
reducing draw calls, optimizing GPU usage, and adapting to platform-specific
requirements.

Draw Call Reduction and GPU Performance

To minimize draw calls and boost GPU performance, we will apply the following
methods:

GPU Instancing: We will utilize GPU instancing to render multiple identical
objects with a single draw call. This significantly reduces CPU overhead,
particularly in scenes with numerous repeated elements.
Shader Optimization: We will analyze and simplify complex material shaders
to decrease GPU processing time. This includes reducing instruction count and
utilizing more efficient shader algorithms.
Lightweight Render Pipelines (LWRP/URP): We will migrate to a lightweight
render pipeline (LWRP/URP), which offers improved performance compared to
the standard render pipeline, especially on mobile platforms.
Occlusion Culling: We will implement occlusion culling to prevent the
rendering of objects that are hidden from the camera's view. This reduces the
workload on the GPU by only rendering visible elements.
Static and Dynamic Batching: We will enable static and dynamic batching
where appropriate. Static batching combines static game objects into larger
meshes, reducing draw calls. Dynamic batching combines small, dynamic

Page 5 of 14



objects that share the same material.
Level of Detail (LOD): Implement level of detail (LOD) systems, which render
distant objects with simplified meshes and textures. This reduces the polygon
count and texture bandwidth required for rendering, improving performance,
especially at long distances.

Addressing Rendering Overhead

We will address the most significant sources of rendering overhead:

Shadow Rendering: We will optimize shadow rendering by reducing shadow
resolution, limiting the number of shadow-casting lights, and employing
shadow distance culling.
Post-Processing Effects: We will carefully manage post-processing effects
such as bloom and ambient occlusion, balancing visual quality with
performance impact. We will consider using alternative, less demanding post-
processing techniques where appropriate.
Complex Material Shaders: We will profile and optimize complex material
shaders, identifying and addressing performance bottlenecks. This may
involve simplifying shader code, reducing texture lookups, or using alternative
shading models.

Platform-Specific Optimizations

We will tailor our rendering strategies to the specific target platforms:

iOS (Metal API): On iOS devices, we will leverage the Metal API for enhanced
rendering performance and efficiency.
Android (Vulkan API): On Android devices that support it, we will use the
Vulkan API to take advantage of its lower-level access to the GPU and improved
performance.
WebGL: For WebGL, we will pay close attention to shader compatibility and
memory management, ensuring that the game runs smoothly within the
constraints of the web browser environment.

Expected Rendering Performance Improvements

Scripting and Code Optimization

Page 6 of 14



Our scripting optimization strategy focuses on improving the performance of game
logic and UI update scripts. These scripts have been identified as areas where
significant gains can be achieved. We plan to use a number of proven approaches to
reduce CPU load and improve overall efficiency.

Object Pooling and Caching

We will implement object pooling to reuse objects instead of constantly creating and
destroying them. This reduces garbage collection overhead, leading to smoother
performance. Caching frequently accessed components and data will also be a
priority. By storing references to these items, we avoid repeated calls to
GetComponent, which can be expensive.

Loop and Algorithm Optimization

Inefficient loops and algorithms can bog down performance. We will carefully
review existing code to identify areas where these can be improved. This includes
reducing the number of iterations, simplifying calculations, and using more
efficient data structures. Our team will profile the code to pinpoint performance
bottlenecks and address them directly.

Asynchronous and Multithreaded Operations

To prevent the main thread from being overloaded, we will offload heavy tasks to
background threads. This includes processes like pathfinding, asset loading, and
data processing. We will leverage C# jobs and async/await patterns to implement
multithreading safely and effectively. This ensures that the game remains
responsive, even when complex operations are running.

Garbage Collection Reduction

Excessive garbage collection can lead to noticeable performance hiccups. We will
take steps to minimize memory allocations, especially within frequently executed
code. This involves reusing existing objects, avoiding unnecessary string
concatenations, and carefully managing data structures. By reducing garbage
collection frequency, we can ensure a more stable and consistent frame rate.

Page 7 of 14



Physics Module Optimization

The physics module often contributes significantly to CPU load. We will optimize
physics interactions by simplifying colliders, reducing the number of rigidbodies,
and adjusting physics settings. This includes using collision layers effectively and
minimizing the use of complex mesh colliders.

UI Update Optimization

Frequent UI updates can also impact performance. We will optimize UI scripts by
reducing the number of updates per frame, using efficient layout techniques, and
caching UI elements. This ensures that the UI remains responsive without
consuming excessive CPU resources.

Asset Management and Memory
Optimization

To optimize ACME-1's Unity project, Docupal Demo, LLC will focus on efficient asset
management and memory optimization techniques. This will ensure smooth
performance across target platforms.

Asset Optimization Strategies

We will address the largest contributors to memory overhead: high-resolution
textures, uncompressed audio, and large mesh data. Our strategy involves:

Addressable Asset System: Implementing Unity's Addressable Asset System
for efficient asset management. This allows loading and unloading assets on
demand.

Asset Bundles: Utilizing asset bundles to group related assets and stream them
as needed. This reduces initial load times and memory footprint.

Prioritized Loading: Loading only essential assets based on the current game
state. This minimizes unnecessary memory usage.

Texture Compression: Applying platform-specific texture compression
techniques. ASTC/ETC compression will be used for mobile platforms.

Page 8 of 14



Texture Atlasing: Combining multiple smaller textures into a single larger
texture (atlas). This reduces draw calls and memory overhead.

Asset Bundle Variants: Creating asset bundle variants optimized for different
platforms. This ensures optimal performance on each device.

Memory Footprint Reduction

To further reduce memory footprint, we will employ the following methods:

Asset Compression: Compressing textures, audio files, and meshes to reduce
their size without significant quality loss.

Asset Pooling: Reusing existing game objects instead of instantiating new
ones. This reduces memory allocation and garbage collection overhead.

Asset Streaming: Loading and unloading assets dynamically based on the
player's location and actions. This minimizes the amount of memory used at
any given time.

Projected Memory Usage Improvement

The following chart shows projected improvement after optimization.

Platform-Specific Optimization
Considerations

We will tailor optimizations to the specific target platforms. This includes mobile
(Android and iOS), VR, and potentially consoles, if required. Each platform presents
unique challenges and opportunities for optimization.

Mobile (Android & iOS)

Mobile platforms require careful optimization due to limited resources. Android
fragmentation means a wide range of hardware configurations must be supported.
iOS relies heavily on the Metal graphics API.

Page 9 of 14



Android: We will address fragmentation by creating device-specific
performance profiles. These profiles will adjust settings based on detected
hardware.
iOS: We will maximize performance by using the Metal API efficiently. This
includes optimized shader code and careful memory management.

WebGL

WebGL has limitations in memory and shader support. We will implement
strategies to work within these constraints.

Memory Management: We will carefully manage memory to avoid crashes.
This includes texture compression and asset unloading.
Shader Optimization: We will simplify shaders to ensure compatibility and
performance. This may involve using simpler lighting models.

General Strategies

For all platforms, we will use these fallback strategies for lower-end hardware:

Reduce texture resolutions to decrease memory usage.
Disable or reduce the intensity of post-processing effects.
Simplify shaders to reduce GPU load.
Use lower-polygon models.

Platform API & Hardware Leveraging

We will leverage platform-specific APIs for optimal rendering. This means using
Metal or Vulkan where available. We will also optimize for specific CPU and GPU
architectures. This will involve using appropriate threading models and SIMD
instructions. Device-specific performance profiles will automatically adjust
graphical settings.

Testing and Validation Plan

We will rigorously test and validate all optimization efforts to ensure that they meet
the project's performance goals and maintain overall stability. Our plan includes
performance testing, regression checks, and clear validation metrics after
optimization.

Page 10 of 14



Performance Testing

We will use a combination of tools and techniques to measure performance
improvements. The Unity Profiler will be our primary tool for identifying
bottlenecks and measuring the impact of optimizations within the Unity Editor and
on target devices. We will also use platform-specific performance monitoring tools
such as Xcode Instruments (for iOS) and Android Studio Profiler (for Android) to
get a deeper understanding of device-level performance. Custom benchmark scenes
will be created to provide controlled and repeatable tests for specific areas of the
game.

Real User Scenario Simulation

To ensure our optimizations translate to a better player experience, we will simulate
real user scenarios during testing. This will involve recording and replaying user
sessions to analyze performance under realistic gameplay conditions. We will
develop automated test suites that mimic common gameplay scenarios, allowing us
to quickly identify performance regressions. Playtesting sessions with
representative users will also be conducted to gather qualitative feedback and
identify any issues that may not be apparent through automated testing.

Success and Rollback Criteria

The success of our optimization efforts will be determined by meeting predefined
performance metrics on all target devices without introducing new bugs. These
metrics will include target frame rates, reduced draw calls, and optimized memory
usage. We will establish clear rollback criteria to address situations where
optimizations introduce critical bugs or fail to meet performance targets after a
defined period. If a rollback is necessary, we will revert to the previous stable
version and reassess our optimization strategy.

Estimated Timeline and Resource
Allocation

We propose a phased approach to optimize your Unity project, ACME-1, with clear
milestones and deliverables. Our team will use daily stand-up meetings and weekly
progress reports to keep you informed. We'll also use Jira for task tracking and
conduct regular code reviews to maintain quality.

Page 11 of 14



Project Timeline

The estimated timeline for this project is 8 weeks, broken down into three key
milestones:

Milestone 1: Profiling and Bottleneck Identification (2 weeks): We will
conduct thorough profiling of your project to identify performance
bottlenecks. This will result in a detailed report outlining areas for
optimization.
Milestone 2: Optimization Implementation and Testing (4 weeks): Based on
the profiling report, we will implement targeted optimizations. This phase
includes rigorous testing to ensure improvements and stability.
Milestone 3: Performance Validation and Final Report (2 weeks): We will
validate the performance gains achieved through optimization. The final
deliverable is an optimized project build, comprehensive performance reports,
and detailed documentation.

Resource Allocation

To successfully complete this project, we will allocate a team of experienced
professionals:

Unity Technical Lead: Provides technical direction and oversight.
Senior Unity Developer: Implements core optimizations and resolves complex
issues.
Graphics Programmer: Focuses on optimizing rendering and graphical
performance.
QA Tester: Ensures the stability and performance of the optimized project.

We believe this timeline and resource allocation will deliver significant performance
improvements for your Unity project within the proposed timeframe.

Potential Risks and Mitigation Strategies

Several factors could potentially impact the Unity optimization process for ACME-1.
These include technical risks like unexpected API changes from Unity, which could
break existing code. We will closely monitor Unity's releases and adjust our
strategies accordingly.

Page 12 of 14



Another risk involves compatibility issues with third-party plugins used in the
project. To address this, we will conduct thorough testing of all plugins after each
optimization step. Unforeseen hardware limitations could also hinder performance
gains. We will profile performance on target hardware throughout the optimization
process to identify and address bottlenecks.

Regression Prevention

To prevent regressions, we will implement several safeguards. We will establish
automated performance tests to continuously monitor the impact of changes. A
version control system (Git) will be used to manage code and track modifications,
allowing easy reversion to previous states if needed. Rigorous regression testing will
be performed after each change to ensure stability and functionality.

Contingency Plans

In the event of unexpected issues, we have established contingency plans. If a
critical problem arises, we can quickly revert to the previous stable version of the
project. We will also adjust our optimization strategies based on the specific issues
encountered. We will collaborate with hardware and software vendors to resolve any
issues related to their products.

Conclusion and Next Steps

The proposed Unity optimization strategy for ACME-1 is designed to significantly
enhance game performance and user experience. This includes improved frame
rates for smoother gameplay, reduced battery consumption for extended play
sessions, and overall increased player satisfaction.

Required Approvals and Resource Allocation

To move forward, we require your approval of this optimization plan and the
associated budget. Access to ACME-1 project resources and key team members will
also be essential for successful implementation.

Page 13 of 14



Implementation and Monitoring

Upon approval, Docupal Demo, LLC will implement the optimization plan. We will
integrate performance monitoring tools to track progress and identify potential
regressions. Automated alerts will be configured to proactively address any
performance issues that arise. Regular optimization reviews, incorporating user
feedback and game updates, will ensure continuous improvement.

Immediate Actions

The immediate next steps include:

1. Review and approve the optimization plan.
2. Allocate the necessary budget for the project.
3. Grant Docupal Demo, LLC access to the required project resources and team

members.

Page 14 of 14


