
Table of Contents
Introduction and Purpose 3

Why Upgrade SvelteKit? 3
Expected Outcomes 3

Current State Assessment 3

Performance Bottlenecks 3
Known Issues 4
Feature Set 4

Upgrade Rationale and Benefits 4

Compatibility and Impact Analysis 5

Code Compatibility 5
Third-Party Integrations 6
Impact Summary 6

Upgrade Roadmap and Timeline 6

Upgrade Phases 6
Resource Allocation 6
Timeline and Sprint Goals 7

Testing Strategy and Quality Assurance 8

Automated Testing 8
Regression Testing 8
User Acceptance Testing (UAT) 8

Deployment and Rollback Plan 8

Deployment Process 9
Rollback Strategy 9
Post-Deployment Monitoring 9

Risk Assessment and Mitigation 10

Mitigation Strategies 10
Contingency Plans 10

Community and Ecosystem Considerations 10

Ecosystem Tooling 11
Feedback Incorporation 11

Conclusion and Recommendations 11

Next Steps 11
Alternatives 11

Page 1 of 10



Introduction and Purpose

This document presents a proposal from Docupal Demo, LLC to ACME-1 for an
update/upgrade of their existing SvelteKit application. Our goal is to enhance
ACME-1's application by leveraging the latest SvelteKit features and improvements.

Why Upgrade SvelteKit?

The primary drivers for this upgrade are to boost application performance, resolve
existing bugs, and unlock access to new functionalities offered in the latest SvelteKit
release. By upgrading, ACME-1 can benefit from a more stable, efficient, and feature-
rich platform.

Expected Outcomes

This SvelteKit update/upgrade aims to deliver several key benefits. We anticipate
improved site speed, leading to a better overall user experience. This upgrade will
also enhance developer productivity, enabling faster development and deployment
of new features. Furthermore, the update will bolster the application's scalability
and security, aligning with ACME-1's long-term business goals.

Current State Assessment

ACME-1 currently operates on SvelteKit version 1.x. This version has served as a
stable foundation, but it now presents limitations that impact performance and user
experience. Our assessment identifies specific areas where an upgrade is beneficial.

Performance Bottlenecks

We've observed a 15% increase in page load times. This negatively affects user
satisfaction and potentially impacts key business metrics. User feedback also
indicates slow navigation within the application. The upgrade to the latest SvelteKit
version promises performance improvements that directly address these issues.

Page 2 of 10



Known Issues

Our analysis reveals potential breaking changes related to layouts and hooks within
the existing SvelteKit 1.x codebase. These changes require careful management
during the upgrade process to prevent disruption and ensure a seamless transition.
Addressing these issues proactively is crucial for a successful upgrade.

Feature Set

SvelteKit 1.x lacks the latest features and optimizations present in newer versions.
Upgrading will unlock access to improved routing, data handling, and server-side
rendering capabilities. These enhancements contribute to a more modern and
efficient application architecture.

Upgrade Rationale and Benefits

Upgrading your SvelteKit application offers significant advantages for ACME-1. The
current SvelteKit version lacks key features and optimizations present in the latest
release. This upgrade is not merely about adopting the newest version; it's about
unlocking enhanced capabilities that directly address ACME-1's business needs and
strategic goals.

This upgrade introduces enhanced routing capabilities. It will simplify navigation
and improve the user experience. The improved server-side rendering (SSR) will
lead to faster initial page loads. This is crucial for retaining users and improving
search engine optimization (SEO). Optimized asset handling will reduce server load
and bandwidth consumption. This will translate to cost savings and improved
application performance.

Security is a top priority. This upgrade includes the latest security patches,
protecting ACME-1 from potential vulnerabilities. The upgrade also improves code
efficiency. This leads to reduced server load, ensuring your application remains
responsive even during peak traffic.

By upgrading, ACME-1 will benefit from faster development cycles. The new
features and improved tooling will allow your team to implement new features more
quickly. This will provide a competitive edge. It will enable ACME-1 to offer more
innovative and timely feature offerings to your customers.

Page 3 of 10



Compatibility and Impact Analysis

The SvelteKit update may affect several areas of the ACME-1 application. We have
identified potential compatibility issues and outlined the likely impact.

Code Compatibility

Some layout components may require adjustments due to changes in SvelteKit's
internal structure. Server hooks and API endpoints using older syntax will also need
refactoring to align with the latest standards. We will use code refactoring and
library updates to address these incompatibilities, guided by SvelteKit's official
migration documentation.

Third-Party Integrations

Third-party adapters used to deploy ACME-1 on different platforms might need
updates. Certain SvelteKit plugins may also require newer versions to ensure proper
functionality. We will verify the compatibility of all plugins and adapters before the
update.

Page 4 of 10



Impact Summary

The update will primarily affect layout components, server-side logic, and
potentially some third-party integrations. The following chart illustrates the
distribution of anticipated compatibility issues across different components:

We will conduct thorough testing to identify and resolve any unforeseen issues. Our
team will follow a structured approach to minimize disruptions and ensure a
smooth transition to the updated SvelteKit version.

Upgrade Roadmap and Timeline

This section details the plan for upgrading Acme, Inc's SvelteKit application. The
upgrade will be performed in two sprints. It includes key phases, resource
allocation, and estimated deadlines.

Upgrade Phases

The upgrade process will follow these key phases:

1. Dependency Updates: This initial phase focuses on updating the SvelteKit
project's dependencies to their latest compatible versions.

2. Code Refactoring: After updating dependencies, we will refactor the codebase
to ensure compatibility with the updated libraries and frameworks.

3. Testing: Rigorous testing will be conducted to identify and resolve any issues
arising from the upgrade, ensuring the application's stability and functionality.

4. Deployment: The final upgraded application will be deployed to the
production environment.

Resource Allocation

The following resources and personnel will be required for the upgrade:

SvelteKit Developers
QA Engineers
DevOps Personnel

Page 5 of 10



Timeline and Sprint Goals

We anticipate completing the upgrade within two sprints. Each sprint will be two
weeks long.

Sprint 1:

Dependency Updates
Initial Code Refactoring

Sprint 2:

Complete Code Refactoring
Testing and Bug Fixes
Deployment

Testing Strategy and Quality Assurance

A robust testing strategy is critical to ensure a smooth and successful SvelteKit
upgrade. We will employ a multi-faceted approach to identify and address any
potential issues arising from the upgrade. Our QA team will be responsible for
executing the tests, with the Lead Developer having final approval.

Page 6 of 10



Automated Testing

We will implement automated tests to verify the core functionality of the upgraded
application. These tests will be developed using Playwright and Jest, providing
comprehensive coverage across different components and user flows. The goal is to
automate the testing of critical features, reducing the risk of human error and
accelerating the testing cycle.

Regression Testing

Regression testing will be performed to confirm that existing functionality remains
intact after the upgrade. We will create a suite of automated regression tests that
cover the most important aspects of the application. Performance benchmarks will
be established before and after the upgrade to identify and address any performance
regressions. We will pay close attention to areas of the application that have been
modified or are dependent on upgraded components.

User Acceptance Testing (UAT)

Following the completion of automated and regression testing, we will conduct user
acceptance testing (UAT) with ACME-1's designated users. This phase will allow real
users to interact with the upgraded application in a production-like environment,
providing valuable feedback on usability and functionality. Any issues identified
during UAT will be addressed promptly by our development team.

Deployment and Rollback Plan

This section details the deployment process for the SvelteKit update, covering all
environments and rollback strategies.

Deployment Process

The update will be deployed across three environments: development, staging, and
production. Each environment serves a distinct purpose in ensuring a smooth and
stable transition.

1. Development Environment: Initial updates and testing occur here.
2. Staging Environment: A mirror of the production environment, used for final

testing and validation.

Page 7 of 10



3. Production Environment: The live environment serving end-users.

Deployment to production will occur after successful testing and validation in both
development and staging. We will follow these steps:

1. Backup the current production environment.
2. Deploy the updated SvelteKit application.
3. Monitor server performance and error rates.
4. Gather and analyze user feedback.

Rollback Strategy

In the event of critical issues following the production deployment, a rollback
strategy is in place to minimize downtime and disruption. The rollback process
involves reverting to the previous stable version of the application.

1. Git Reversion: The codebase will be reverted to the commit immediately
preceding the update deployment.

2. Database Restoration: Database backups taken before the update will be
restored.

Post-Deployment Monitoring

Post-deployment monitoring is crucial to identify and address any issues that may
arise. We will actively monitor:

Server performance metrics (CPU usage, memory consumption).
Application error rates.
User feedback channels for reported issues.

Risk Assessment and Mitigation

Updating SvelteKit carries inherent risks. We've identified potential technical and
operational challenges. These include unexpected breaking changes in the new
version. Compatibility issues with existing libraries also pose a risk. Finally, the
upgrade could introduce performance regressions.

Page 8 of 10



Mitigation Strategies

To minimize these risks, Docupal Demo, LLC will employ several strategies.
Thorough testing is paramount. We will conduct comprehensive tests in a staging
environment. This will identify and address any issues before they affect the
production environment. We will also adopt a phased deployment approach. This
allows us to monitor the application closely after each stage. We will adhere strictly
to official SvelteKit migration guides. These guides provide best practices for a
smooth transition.

Contingency Plans

Despite our best efforts, unforeseen issues may arise. Our contingency plans include
a dedicated rollback team. This team will be ready to revert to the previous version if
necessary. We will maintain open communication with ACME-1 stakeholders.
Regular updates will keep you informed of our progress and any potential issues.

Community and Ecosystem
Considerations

The proposed SvelteKit upgrade aligns well with current community trends. The
new version boasts a high adoption rate within the Svelte and SvelteKit
communities. This widespread adoption translates to active community support,
ensuring readily available assistance and resources during and after the upgrade
process. We will actively monitor community forums and discussions to address any
arising issues promptly.

Ecosystem Tooling

The SvelteKit ecosystem includes tools such as the Svelte Language Server and VS
Code extensions. These tools, along with other SvelteKit-related utilities, are fully
compatible with the target SvelteKit version. This compatibility minimizes
disruption to our development workflow.

Page 9 of 10



Feedback Incorporation

Our upgrade process includes a mechanism for incorporating feedback. We will
integrate internal feedback gathered during testing phases. Furthermore, we will
continuously monitor community feedback channels to identify and address any
concerns or suggestions from the broader SvelteKit user base. This proactive
approach ensures a smooth transition and maximizes the benefits of the upgraded
platform.

Conclusion and Recommendations

The proposed SvelteKit upgrade presents a valuable opportunity for ACME-1 to
enhance its application's performance, security, and maintainability. The upgrade is
deemed feasible, provided a structured approach is followed.

Next Steps

Schedule Initial Testing: We recommend scheduling initial testing in a
controlled environment. This will help identify potential issues early in the
process.
Prepare Development Environment: A dedicated development environment
should be prepared. This ensures a smooth transition and minimizes
disruption to the live application.

Alternatives

ACME-1 could delay the upgrade. The team could also explore alternative
frameworks. However, these options may not provide the same benefits as the
proposed SvelteKit upgrade.

We advise moving forward with the upgrade, adhering to the outlined plan and
timeline. Careful planning and execution are key to success. The initial testing
phase is crucial to validate the upgrade's compatibility and performance. A well-
prepared development environment will streamline the process.

Page 10 of 10


