
Table of Contents
Introduction and Objectives 3

Introduction 3

Project Context 3

Objectives 3

Current System Overview 3

Key Dependencies and Integrations 4

Pain Points and Technical Debt 4

Upgrade Impact Analysis 4

Compatibility 4

Deprecated Features 5

Performance 5

Upgrade Strategy and Roadmap 5

Phased Upgrade Plan 5

Resource Allocation 6

Timeline 7

Testing and Validation Plan 7

Testing Methodologies 7

Quality Assurance Processes 7

Validation Criteria 8

Testing Timeline 8

Risk Assessment and Mitigation 8

Technical Risks 8

Operational Risks 8

Contingency Plans 9

Performance Benchmarking 9

Monitoring Tools 9

Baseline Metrics 9

Post-Upgrade Metrics 10

Performance Comparison 10

Security Considerations 10

Security Testing 10

Compliance 11

Community and Support Resources 11

Page 1 of 12



Official Resources 11

Community Support 11

Third-Party Tools and Services 11

Conclusion and Next Steps 12

Critical Decisions 12

Immediate Next Steps 12

Stakeholder Responsibilities 12

Page 2 of 12



Introduction and Objectives

Introduction

Docupal Demo, LLC proposes this plan to update and upgrade your application's
Ember.js framework. Our goal is to modernize the application and improve its
overall performance. The upgrade will also enable you to take advantage of the latest
Ember.js features.

Project Context

This upgrade is driven by the need to maintain compatibility with current web
browsers and libraries. Modernizing the framework improves application security.
It will also boost developer productivity. The update reduces technical debt.

Objectives

The primary objectives of this Ember.js upgrade are:

Improve application performance.
Enhance application security.
Reduce existing technical debt.
Ensure compatibility with modern browsers.
Enable access to modern Ember.js features.
Improve developer productivity.

Current System Overview

Our current application is built using Ember.js version 3.28. This version, while
stable, is now several major versions behind the latest releases. This creates
challenges in maintaining the application and leveraging newer features and
performance improvements offered by more recent Ember.js versions.

Key Dependencies and Integrations

The application relies heavily on several key dependencies:

Page 3 of 12



Ember Data: Used for managing the application's data layer and interacting
with backend APIs.
Ember Simple Auth: Handles user authentication and authorization.
DocuPal API: The application integrates directly with the DocuPal API to
provide core functionality.

Pain Points and Technical Debt

The current system has several pain points that impact developer productivity and
application performance:

Outdated Dependencies: Many dependencies are outdated, leading to potential
security vulnerabilities and compatibility issues.
Slow Build Times: The older Ember.js version contributes to slow build times,
increasing development iteration cycles.
Complex Workarounds: Due to the limitations of Ember.js 3.28, we've
implemented complex workarounds to achieve functionality that is now
natively supported in newer versions. This adds to the codebase's complexity
and makes maintenance more difficult. These workarounds are specific to the
older version and may not be compatible with future upgrades without
significant rework. The current architecture requires refactoring and
simplification to align with modern Ember.js practices.

Upgrade Impact Analysis

This section outlines the potential impacts of upgrading our Ember.js application.
We will cover compatibility, deprecated features, and performance considerations.

Compatibility

The upgrade might introduce compatibility issues. Older versions of Ember Data
could cause problems. Some third-party Ember addons may also be incompatible.
We will carefully test all dependencies. This testing will identify and address any
conflicts. We will update or replace incompatible addons as needed.

Page 4 of 12



Deprecated Features

This upgrade will remove support for older browsers. Certain deprecated APIs
related to computed properties and observers will also be removed. We will migrate
away from these deprecated features. Our code will be updated to use the
recommended replacements. This ensures a smooth transition and avoids future
issues.

The following chart shows the deprecated features across Ember.js versions:

Performance

We expect an overall performance improvement. The optimized rendering engine
should provide gains. However, initial performance regressions are possible. We will
actively monitor performance after the upgrade. We will address any regressions
through optimization efforts. This includes code profiling and targeted
improvements.

Upgrade Strategy and Roadmap

Our upgrade strategy focuses on an incremental, phased approach to ensure a
smooth transition and minimize disruption to your current application. We will
migrate individual components and routes step-by-step. This allows for continuous
testing and validation throughout the process.

Phased Upgrade Plan

The upgrade will be executed in three distinct phases:

Phase 1: Ember.js Core Upgrade to 4.0

Objective: Upgrade the core Ember.js framework to version 4.0.
Activities: Update Ember CLI, resolve any deprecation warnings, and conduct
thorough testing of core functionalities.
Deliverables: A stable Ember.js 4.0 application with all existing features fully
functional.

Phase 2: Ember Data and Ember Simple Auth Updates

Page 5 of 12



Objective: Update Ember Data and Ember Simple Auth to versions compatible
with Ember.js 4.0.
Activities: Upgrade Ember Data and Ember Simple Auth, adjust configurations,
and update any related code.
Deliverables: Fully functional data layer and authentication system.

Phase 3: Modern Component Migration

Objective: Migrate existing components to leverage modern Ember.js features
and best practices.
Activities: Refactor components to use Ember Octane features, improve
performance, and enhance maintainability.
Deliverables: Optimized and modernized components that take full advantage
of the Ember.js ecosystem.

Resource Allocation

The following teams will be involved in the upgrade process:

Frontend Team: Responsible for the actual upgrade, code migration, and
component refactoring.
DevOps Team: Responsible for setting up the necessary environments,
managing deployments, and ensuring infrastructure stability.
QA Team: Responsible for testing all phases of the upgrade to ensure quality
and stability.

The teams will use the following tools:

Ember CLI: For managing the Ember.js project and running commands.
Ember Inspector: For debugging and inspecting the Ember.js application.
Testem: For running automated tests.
GitHub: For version control and collaboration.

Timeline

Phase Estimated Duration Start Date End Date

Phase 1: Ember.js Core Upgrade 4 weeks 2025-09-02 2025-09-26

Phase 2: Data/Auth Updates 3 weeks 2025-09-29 2025-10-17

Phase 3: Component Migration 6 weeks 2025-10-20 2025-11-28

Page 6 of 12



Note: These dates are estimates and may be adjusted based on the project's progress.

Our final deliverable will be a fully upgraded and tested application that leverages
the latest Ember.js features.

Testing and Validation Plan

Our testing strategy ensures a smooth and reliable Ember.js update/upgrade. We will
use a combination of automated and manual testing techniques to identify and
resolve potential issues.

Testing Methodologies

We will employ the following testing methodologies:

Unit Tests: These tests will verify the functionality of individual components
and functions in isolation.
Integration Tests: These tests will confirm the interaction between different
parts of the application.
End-to-End Tests: These tests will simulate user workflows to ensure the
application functions correctly from start to finish. We'll use Cypress for end-
to-end testing.

Ember CLI's built-in testing framework will be utilized for unit and integration
tests.

Quality Assurance Processes

We will maintain code quality and prevent regressions. GitHub Issues will track
regressions and new issues. Labels will help categorize issues. A project board will
help monitor progress and keep things organized.

Validation Criteria

Before deployment, the following acceptance criteria must be met:

All Tests Pass: All unit, integration, and end-to-end tests must pass
successfully.

Page 7 of 12



Performance Benchmarks: Performance benchmarks must meet or exceed
current levels. This will ensure the update does not negatively impact
application speed.
Key User Workflows: Key user workflows must function correctly. We will
manually test these workflows to confirm a positive user experience.

Testing Timeline

Risk Assessment and Mitigation

This section identifies potential risks associated with the Ember.js update/upgrade
and outlines mitigation strategies to minimize their impact. We have considered
both technical and operational risks during this assessment.

Technical Risks

The primary technical risks involve unexpected compatibility issues with existing
code and potential performance regressions after the upgrade. To mitigate these
risks, we will conduct thorough testing in a staging environment that mirrors the
production environment. This testing will include regression testing, integration
testing, and user acceptance testing. We will also closely examine deprecation
warnings and follow Ember.js's recommended upgrade path to address potential
compatibility issues proactively.

Operational Risks

Operational risks include potential downtime during deployment and challenges
with user adoption of the updated application. To minimize downtime, we will use a
phased deployment approach with feature flags. This allows us to gradually roll out
changes to users, monitor performance, and quickly revert if necessary.
Deployments will be scheduled during off-peak hours to reduce the impact on users.

We will also provide user support and training materials to facilitate user adoption.
This includes updated documentation, tutorials, and FAQs. A dedicated support
team will be available to address user questions and issues during the transition
period.

Page 8 of 12



Contingency Plans

We have established contingency plans to address unforeseen issues. These plans
include the ability to quickly roll back to the previous version of the application if
critical issues arise. We can also temporarily disable new features to isolate
problems and minimize disruption. User support will be readily available to assist
with any issues that arise during and after the upgrade.

Performance Benchmarking

We will carefully track key performance indicators (KPIs) to measure the success of
the Ember.js update/upgrade. These KPIs include application load time, time to first
interaction, error rate, and user satisfaction. Improvements will be measured by
comparing performance metrics before and after the upgrade. We will also track the
number of resolved bugs and monitor user feedback.

Monitoring Tools

We will use several tools for performance monitoring:

Ember Inspector: For in-depth analysis of Ember.js application performance.
Google PageSpeed Insights: To identify opportunities to improve page speed
and overall site performance.
Custom Performance Monitoring Scripts: To collect specific performance data
relevant to our application.

Baseline Metrics

Before the upgrade, we will establish a baseline for each KPI. This will involve
measuring the current application load time, time to first interaction, error rate, and
collecting user satisfaction data. The following represents example baseline metrics:

Application Load Time: 3.5 seconds
Time to First Interaction: 2.0 seconds
Error Rate: 1.5%
User Satisfaction: 4.0 (out of 5)

Page 9 of 12



Post-Upgrade Metrics

After the upgrade, we will measure the same KPIs to determine the impact of the
changes. Our goal is to see a significant improvement in application load time, time
to first interaction, and a reduction in error rate. We will also monitor user feedback
to ensure that the upgrade has a positive impact on user satisfaction.

Performance Comparison

The following chart illustrates a comparison of performance before and after the
upgrade.

The data will be presented in a clear and concise format to facilitate easy
comparison and analysis.

Security Considerations

This Ember.js upgrade to version 5.0 addresses key security concerns. The new
version incorporates security patches that mitigate potential Cross-Site Scripting
(XSS) vulnerabilities. Furthermore, it includes updates to underlying dependencies,
resolving known vulnerabilities within those components.

Security Testing

Following the upgrade, Docupal Demo, LLC will conduct comprehensive security
testing. This will involve:

Penetration testing to identify potential weaknesses.
Security code reviews to ensure adherence to secure coding practices.
Dependency vulnerability scanning using tools like npm audit to detect and
address any remaining vulnerabilities.

Compliance

Post-upgrade, we will ensure the application remains compliant with all relevant
data privacy and security regulations. This includes performing regular security
audits and staying current with the latest security best practices. Our commitment
ensures that the upgraded application meets or exceeds industry standards for data
protection and user privacy.

Page 10 of 12



Community and Support Resources

Ember.js offers extensive community support and comprehensive documentation to
assist with the update/upgrade process. These resources can help address
challenges and ensure a smooth transition.

Official Resources

The official Ember.js Guides provide detailed instructions and best practices for
updating and upgrading Ember applications. The Ember Times newsletter delivers
timely updates, announcements, and community insights. Detailed API
documentation is also available for in-depth technical information.

Community Support

Active community support is available through the Ember.js Discord server. This
real-time chat platform allows developers to ask questions, share solutions, and
collaborate with other Ember users. The Ember.js Forum provides a platform for
longer-form discussions and knowledge sharing.

Third-Party Tools and Services

Several third-party tools and services can further streamline the upgrade. Ember
Observer helps evaluate the compatibility and quality of Ember addons. Ember
Addon Search simplifies the discovery of useful addons. Services such as Heroku
and Netlify provide deployment and hosting solutions tailored for Ember
applications.

Conclusion and Next Steps

This proposal outlines the recommended approach for updating or upgrading your
Ember.js application. Key decisions involve selecting the target Ember.js version,
addressing deprecated features, and prioritizing component migration. Successful
execution will improve performance, security, and maintainability.

Page 11 of 12



Critical Decisions

Before proceeding, we need alignment on the following:

Target Ember.js Version: Select the specific version for the update/upgrade.
Deprecation Handling: Determine the strategy for managing deprecated
features.
Component Prioritization: Define the order in which components will be
migrated.

Immediate Next Steps

Following approval of this proposal, the following actions will be taken next week:

1. Detailed Upgrade Plan: A comprehensive plan will be created, outlining the
tasks, dependencies, and timelines for the upgrade process.

2. Task Assignment: Specific tasks will be assigned to individual team members
based on their expertise and availability.

3. Staging Environment Setup: A dedicated staging environment will be
configured to mirror the production environment, allowing for thorough
testing and validation of the upgraded application.

Stakeholder Responsibilities

The Project Manager will oversee the entire upgrade process, ensuring adherence to
the timeline and budget. The Lead Developer will provide technical guidance and
ensure code quality. The CTO will provide executive support and resolve any
strategic issues that may arise.

Page 12 of 12


