[5) DOCUPAL

Docupal Demo, LLC

Table of Contents

Introduction to Ember.js Optimization oo 3
Why OPHImIzZe? oo 3
Goals of this Proposal ----------reomremmemremren oo 3

Current Performance Assessment and Benchmarking - 3

Profiling Methodologies ----------------smmmemm oo 4
Key Performance IMetriCs ------------r-omrmsmmmens oo 4
Establishing Performance Baselines ----------------ooommoommmmemmooo oo 5
Interpreting Benchmark Data -------------ooomoemmmmmmme oo 5

Codebase Optimization Strategies - 5
Addressing Common Code Inefficiencies -« 6
Optimizing Runtime Behavior -« 6
Leveraging and Avoiding Ember.js Features -« 7
Specific Coding PractiCes ---------------mroommrommmems s 7

Build Process and Asset Optimization oo 8
Optimizing the Ember.js Build - 8
Asset Mana@eIMeNt -~ oo 8
Lazy Loading and Code SpItting -« -rormmmmmmmmrmne oo 9
Improving Build Times and Reducing Payload Size -~~~ 9

Runtime Performance Enhancements oo 10
Reducing Re-T@Nders ---------orosmmsooomseoenns oo 10
Optimizing Computed Properties ------------------sooommommms oo 10
Improving Data Loading -~ 10
Enhancing Rendering - 11
Additional Runtime Strategies -----------------o--oooree 11

Monitoring and Continuous Performance Management - 1
Setting Up Continuous MONitoring -« nn
Key Performance MetriCs -« oo 12
Proactive Regression Management -« 12
Visualizing Performance Trends ---------------mmommmemmmoms oo 12

Case Studies and Real-World Examples -------------ooommemmommomom oo 13
Improved Load TiImes -----------mmsmmmmmmmens s 13
Enhanced Rendering Performance --------------oooemmmmmmmemmmms oo 13
Reduced Memory Usage -------------mmrmsmmrsenss oo 14

Page 1 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Summary and Recommendations oo 14
QUICK WIS - 14
Key Optimization Areas -------------ooommmmmmmoos oo 14
Long-Term Strategy ---------------oooooom oo 15

References and Further Reading - 15
Official Ember.js RESOUICES ~---------mrrmmmmmmrrm oo 15
External Tools and Libraries ----------------ooommmmmmmnnm oo 15
Community Best Practices -----------------mmmmmmmmmmoooooooooooooooooco 15

Page 2 of 16

+123 456 7890 a7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Introduction to Ember.js Optimization

Ember.js is a JavaScript framework used to create ambitious web applications. It
relies on a component-based architecture. Handlebars templates, Ember Data (its
data layer), and a routing system are core parts of Ember.js.

Optimizing Ember.js applications is essential. It ensures users have a smooth,
responsive experience. Faster load times and better overall performance are key
benefits, especially as applications become more complex.

Why Optimize?
Poorly optimized Ember.js applications can suffer from:

« Slow initial load times
 Janky rendering
« Inefficient data handling

Goals of this Proposal

This proposal focuses on several key optimization goals:

« Pinpointing performance bottlenecks.

Reducing the initial load time of your application.

Improving how quickly and smoothly your application renders content.
Making data handling more efficient.

Setting up ongoing performance monitoring.

Current Performance Assessment and
Benchmarking

To effectively optimize your Ember.js applications, we must first understand their
current performance. This involves profiling, measuring key metrics, and
establishing performance baselines.

Page 3 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Profiling Methodologies

We will employ a combination of tools and techniques to gain a comprehensive
understanding of your application's performance. This includes:

« Ember Inspector: This browser extension provides insights into your Ember
application's component rendering, data flow, and general architecture. It
allows us to identify slow-rendering components and inefficient data
handling.

o Chrome DevTools (Performance Tab): The Performance tab in Chrome
DevTools offers detailed profiling capabilities. We can record application
activity, analyze CPU usage, identify long-running tasks, and pinpoint memory
leaks.

« Skylight (Optional): For more in-depth monitoring in production
environments, Skylight provides detailed performance metrics and insights
into your Ember application’s behavior under real-world load.

» ember-cli-benchmark (Optional): This tool allows us to run focused
benchmarks on specific parts of your Ember application, such as component
rendering or data processing.

Key Performance Metrics

We will focus on the following key performance metrics to assess your application's
performance:

 First Contentful Paint (FCP): This metric measures the time it takes for the
first piece of content to appear on the screen. A faster FCP provides a better
user experience.

« Time to Interactive (T'TI): TTI measures the time it takes for the application to
become fully interactive and responsive to user input. A lower TTI indicates a
more responsive application.

« Rendering Time: We will measure the time it takes for components to render
and update. Slow rendering can lead to a sluggish user interface.

« Memory Usage: We will monitor memory usage to identify potential memory
leaks or inefficient memory management. Excessive memory usage can
impact application performance and stability.

» Request/Response Times (API Calls): We will measure the time it takes for API
requests to complete. Slow API calls can significantly impact application
performance.

Page 4 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Establishing Performance Baselines

Before implementing any optimizations, we will establish performance baselines
for each of the key metrics. This will involve:

1. Running Performance Tests: We will run a series of performance tests using
the tools and techniques described above.

2. Collecting Data: We will collect data on FCP, TTI, rendering time, memory
usage, and API call times.

3. Analyzing Data: We will analyze the collected data to identify performance
bottlenecks and areas for improvement.

4. Documenting Baselines: We will document the performance baselines for
each metric. These baselines will serve as a reference point for measuring the
impact of our optimization efforts.

For example, the initial load time could be visualized as follows:

Similarly, rendering speed for a key component might look like this:

Interpreting Benchmark Data

The data collected from profiling and benchmarking will be carefully analyzed. We
will compare metrics before and after optimizations to identify statistically
significant improvements. We will also be vigilant in identifying any performance
regressions that may occur as a result of our changes. The goal is to ensure that all
optimizations lead to measurable and positive impacts on the user experience.

Codebase Optimization Strategies

Optimizing your Ember.js codebase requires a multi-faceted approach. We will focus
on identifying and rectifying common inefficiencies. These include reducing
unnecessary re-renders, improving computed property performance, and
streamlining data loading.

Page 5 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[©) DOCUPAL

Docupal Demo, LLC

Addressing Common Code Inefficiencies

Many Ember.js applications suffer from common coding issues. Unnecessary re-
renders often occur when components update even without data changes.
Inefficient computed properties can trigger excessive calculations, slowing down
the application. Overly aggressive DOM manipulation and suboptimal data loading
strategies can further degrade performance.

To combat these issues, we will implement strategies like:

» Reducing Observers: Excessive use of observers can lead to performance
bottlenecks. Review your code and replace observers with tracked properties
where appropriate.

« Optimizing Computed Properties: Ensure computed properties are only
dependent on the data they actually use. Utilize techniques like caching and
lazy evaluation to prevent unnecessary recalculations.

« Minimizing Re-renders: Implement {{#if}} and {{ #unless}} blocks carefully to
prevent components from re-rendering unnecessarily. Consider using the
immutable helper for object comparisons.

« Improving Data Loading: Use Ember Data efficiently. Avoid over-fetching data.
Use background reloading to keep data fresh without blocking the UL

« Reducing DOM manipulation: Batch DOM updates and use efficient DOM
manipulation techniques. Avoid direct DOM manipulation whenever possible.

Optimizing Runtime Behavior

How your application behaves at runtime significantly impacts performance. We
can optimize runtime behavior through several techniques:

« Debouncing and Throttling: Control the frequency of function execution in
response to user input. This prevents performance issues caused by rapid,
repeated actions. For example, debounce a search input field to only trigger a
search after the user pauses typing.

» Judicious Use of run.later: The run.later function schedules tasks to run after
the current run loop. Use it to defer less critical tasks, preventing them from
blocking the UL

« Avoiding Synchronous Operations: Avoid long-running synchronous
operations in the rendering process. These can freeze the Ul and create a poor
user experience. Instead, use asynchronous operations and display loading
indicators.

Page 6 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Leveraging and Avoiding Ember.js Features

Ember.js provides features that can boost performance if used correctly. Conversely,
some features can negatively impact performance if misused.

» Leveraging Glimmer VM: Glimmer VM is Ember's rendering engine. It is
designed for speed and efficiency. Write templates that take advantage of
Glimmer's features, such as tracked properties and the angle bracket
invocation syntax.

» Tracked Properties: Tracked properties automatically trigger updates when
their values change. Use them instead of observers for improved performance.

- Ember Data's Adapter Layer: Ember Data's adapter layer provides a flexible
way to interact with different data sources. Use it to optimize data loading and
caching.

» Avoiding Excessive Observers: As mentioned earlier, excessive use of
observers can lead to performance problems. Replace them with tracked
properties or other more efficient techniques whenever possible.

Specific Coding Practices

Here are some specific coding practices to improve Ember.js application efficiency:

« Reduce the number of observers: Migrate from observers to tracked
properties where possible.

» Optimize Computed Properties: Ensure computed properties only depend on
necessary data. Utilize caching strategies.

« Minimize Re-renders: Use {{#if}} and {{#unless}} blocks effectively to control
component updates. Utilize techniques like immutable data patterns.

« Leverage the Run Loop: Understand and utilize the Ember run loop to
schedule tasks efficiently.

« Efficient Data Loading: Avoid over-fetching data and use background
reloading for a smoother user experience.

o Efficient DOM manipulation: Batch DOM updates and use efficient DOM
manipulation techniques.

Page 7 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Build Process and Asset Optimization

Optimizing the build process and managing assets effectively are crucial for
enhancing the performance of Ember.js applications. By streamlining these aspects,
we can significantly reduce load times, improve user experience, and ensure
efficient resource utilization.

Optimizing the Ember.js Build

Ember CLI provides a solid foundation for building Ember.js applications. To further
optimize the build process, we will leverage several key tools and configurations:

« Ember CLI: We will ensure that the latest version of Ember CLI is used to take
advantage of the newest build optimizations and features.

« Webpack (or other bundlers): Integrating Webpack allows for advanced
bundling and optimization techniques. We will configure Webpack to handle
module bundling, asset processing, and code transformation.

 Production Builds: Utilizing the ember build --environment production
command is essential. This command applies critical optimizations such as
code minification, dead code elimination (tree shaking), and asset
fingerprinting.

Asset Management

Effective asset management plays a vital role in improving application performance.
Key strategies include:

« Image Optimization: Optimizing images reduces their file size without
sacrificing visual quality. Tools like ImageOptim or TinyPNG will be used to
compress images.

« Content Delivery Network (CDN): Hosting assets on a CDN ensures that they
are delivered quickly to users around the globe. We will configure the
application to use a CDN for static assets.

« Browser Caching: Leveraging browser caching mechanisms allows users’
browsers to store static assets locally, reducing the need to download them
repeatedly. We will configure appropriate cache headers for all static assets.

Page 8 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Lazy Loading and Code Splitting

Lazy loading and code splitting are essential for reducing the initial load time of the
application. By loading code and assets only when they are needed, we can
significantly improve the user experience. Best practices include:

« Ember's Route-Based Loading: Ember’s built-in route-based loading allows us
to load code and assets associated with specific routes only when those routes
are visited.

« Dynamic Imports: Using dynamic imports (import()) allows us to load
modules on demand. This is particularly useful for components or modules
that are not needed on initial load.

« ember-auto-import Addon: The ember-auto-import addon simplifies the
process of lazy loading dependencies. It automatically handles the dynamic
loading of modules, making it easier to implement code splitting.

Improving Build Times and Reducing Payload Size

Several techniques can be employed to improve build times and reduce the overall
payload size of the application:

» Code Minification: Minifying code reduces its file size by removing
unnecessary characters such as whitespace and comments.

» Tree Shaking: Tree shaking eliminates dead code, i.e., code that is not actually
used by the application. This can significantly reduce the size of the final
bundle.

« Caching Strategies: Implementing effective caching strategies can
significantly reduce build times. This includes caching dependencies,
intermediate build artifacts, and the final output.

The following bar chart illustrates potential build time reductions through
optimization.

This chart shows build time improving from 120 seconds to 50 seconds after
optimization.

Page 9 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Runtime Performance Enhancements

Effective runtime optimizations are crucial for ensuring a smooth and responsive
user experience in Ember.js applications. Several key strategies can significantly
improve performance.

Reducing Re-renders

Unnecessary re-renders can be a major performance bottleneck. Minimizing these
is essential. One approach is to carefully manage component state and ensure that
components only re-render when their relevant data changes. Using immutable
data patterns can help with this, as changes to immutable data structures are easily
detected. Also, using the {{#each}} helper's @identity argument can prevent re-
renders when the underlying data hasn't changed.

Optimizing Computed Properties

Computed properties are a powerful feature, but they can also be a source of
performance issues if not used carefully. Avoid complex computations within
computed properties. Instead, consider breaking them down into smaller, more
manageable units. Use the volatile() modifier when the computed property's value
should not be cached. Also, ensure computed properties only depend on the data
they actually need.

Improving Data Loading

Efficient data loading is critical for a fast application. Ember Data provides several
features that can help.

« Efficient Serializers: Use serializers that efficiently transform data between
the server and the Ember Data store.

« Data Normalization: Normalize data to reduce redundancy and improve data
consistency.

 Relationship Optimization: Optimize relationships between models to avoid
unnecessary data fetching. Utilize techniques like includes to eagerly load
related data and queryParams to control the amount of data requested.

Page 10 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Enhancing Rendering

Ember-specific patterns significantly improve rendering performance. Leverage
Glimmer's efficient rendering engine by minimizing DOM manipulations. Utilize
the {{did-insert}} and {{did-update}} modifiers effectively to perform DOM
operations after the component has been inserted or updated.

Additional Runtime Strategies

Several other runtime strategies contribute to a more responsive application.

 Deferred Rendering: Defer non-critical rendering tasks to avoid blocking the
main thread.

» requestAnimationFrame: Use requestAnimationFrame for animations and
visual updates to ensure smooth rendering.

« Throttling User Input: Throttling user input handlers, such as those for
keyboard events, prevents excessive computations and improves
responsiveness.

« Ember Concurrency: Utilize Ember Concurrency to manage asynchronous
tasks and prevent race conditions, ensuring a more stable and performant
application.

Monitoring and Continuous Performance
Management

Continuous performance monitoring is essential for maintaining an optimized
Ember.js application. We recommend setting up systems to track key metrics and
proactively address regressions.

Setting Up Continuous Monitoring

To establish continuous monitoring, consider using tools specifically designed for
this purpose. Options include:

« Skylight: A popular choice for Ember.js applications, offering detailed
performance insights.

» New Relic: A comprehensive monitoring platform that supports Ember.js and
provides a wide range of features.

Page 11 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

« ember-cli-performance: A dedicated Ember CLI addon for performance
analysis.

» Custom Dashboards: Develop your own dashboards using standard JavaScript
performance monitoring tools to track specific metrics relevant to your
application.

Key Performance Metrics

Focus on tracking metrics that directly impact user experience. Examples include:

Page Load Times: Monitor how long it takes for pages to fully load.
Transition Times: Measure the time it takes to transition between routes.
Rendering Performance: Track the time spent rendering components.
Memory Usage: Monitor memory consumption to identify potential leaks.
API Response Times: Track the responsiveness of backend APIs.

Proactive Regression Management

Address performance regressions promptly to minimize their impact. Implement
the following strategies:

1. Set Up Alerts: Configure alerts to notify you when key performance metrics
exceed predefined thresholds.

2. Investigate Root Causes: When an alert is triggered, investigate the underlying
cause of the regression.

3. Implement Fixes or Revert Changes: Based on your investigation, implement
necessary fixes or revert changes that introduced the regression.

Visualizing Performance Trends

Utilize area charts to visualize performance trends over time. This allows you to
easily identify patterns and anomalies. For example, an area chart could depict page
load times over the past week, highlighting any spikes or increases.

By continuously monitoring performance and proactively addressing regressions,
you can ensure your Ember.js application remains optimized and provides a smooth
user experience.

Page 12 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Case Studies and Real-World Examples

Many organizations have seen great success by optimizing their Ember,js
applications. These successes often involve addressing performance challenges and
achieving measurable improvements. Let's look at some examples.

Improved Load Times

Large Emberjs applications have often struggled with initial load times. One
company successfully reduced its initial load time by 60% by implementing route-
based code splitting and lazy loading of non-critical assets. They identified that a
large portion of their JavaScript was not needed on initial load. The team used
Ember's built-in features along with ember-auto-import to split the application into
smaller chunks. This allowed the browser to download only the code required for
the initial view.

Enhanced Rendering Performance

Another organization improved rendering performance by focusing on optimizing
their templates and components. They used the Ember Inspector to identify slow-
rendering components. By reducing unnecessary computations in their templates
and using techniques like {{did-insert}} and {{did-update}} modifiers for targeted
DOM manipulations, they achieved a 40% improvement in rendering speed. This
resulted in a much smoother and more responsive user interface.

Page 13 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Route Optimization 25%

Template Optimization 40%

Component Optimization 35%

Reduced Memory Usage

Memory leaks and excessive memory usage can be a problem in long-running
Ember.js applications. One team tackled this by using the Chrome DevTools
memory profiler to identify memory leaks. They found several instances where
event listeners were not being properly cleaned up when components were
destroyed. By using willDestroy lifecycle hook to remove these listeners, they
significantly reduced memory consumption. This led to a more stable and
performant application, especially for users with older devices or longer session
times.

Summary and Recommendations

This proposal outlines a comprehensive strategy to optimize your Ember,js
applications, focusing on architecture, identifying bottlenecks, and leveraging
profiling tools. We address both code-level and runtime optimizations, along with
improving asset management and data handling.

Page 14 of 16

+123 456 7890 a7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

Quick Wins

Several immediate actions can provide noticeable performance improvements.
Enabling production builds, optimizing images, and utilizing a Content Delivery
Network (CDN) are straightforward steps. These changes reduce asset loading times
and ensure the application runs in its most efficient mode.

Key Optimization Areas

Our top recommendations center on reducing unnecessary re-renders, optimizing
data loading strategies, and employing efficient build configurations. Minimizing
re-renders prevents wasteful computations. Efficient data loading ensures the
application fetches and processes data optimally. Well-configured builds will strip
out development overhead.

Long-Term Strategy

Achieving sustained performance requires ongoing effort. We advise conducting
regular performance audits to identify new bottlenecks as the application evolves.
Establish clear, measurable performance goals. Continuous monitoring of key
performance metrics is crucial for tracking progress and identifying regressions.

This iterative approach ensures your Ember.js application maintains optimal
performance over time.

References and Further Reading

This section provides resources for deepening your understanding of Ember,js
optimization.

Official Ember.js Resources

Refer to the official Ember.js guides and API documentation for core concepts. The
Ember.js community forums also offer valuable insights.

Page 15 of 16

+123 456 7890 7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




[5) DOCUPAL

Docupal Demo, LLC

External Tools and Libraries

Consider using tools such as Skylight for performance monitoring. Also, explore
libraries like ember-cli-performance and ember-auto-import. Standard JavaScript
performance monitoring tools are also helpful.

Community Best Practices

Stay up-to-date with the latest community best practices via the Ember.js forums
and Stack Overflow. Look for relevant blog posts and articles as well.

Page 16 of 16

+123 456 7890 a7 info@website.com P.O. Box 283 Demo
+123 456 7890 websitename.com Frederick, Country




