
Table of Contents
Introduction and Background 3

Current Application State 3

Migration Drivers 3

Project Objectives 4

Current Architecture and Codebase Analysis 4

Architecture Overview 4

Dependency Analysis 4

Codebase Health and Technical Debt 5

Migration Strategy and Approach 5

Incremental Migration Methodology 5

Risk Mitigation 6

Tools and Frameworks 6

Tentative Timeline 7

Compatibility and Dependency Management 7

Ember.js and Addon Versions 7

Third-Party Dependencies 7

Backend and Service Integrations 8

Risk Assessment and Mitigation 8

Potential Risks 8

Mitigation Strategies 8

Impact and Likelihood 9

Contingency Plans 9

Testing and Quality Assurance Plan 10

Testing Frameworks and Tools 10

Testing Types 10

Quality Measurement and Tracking 10

Implementation Roadmap and Timeline 11

Phase 1: Assessment (2 weeks) 11

Phase 2: Upgrade Core (4 weeks) 11

Phase 3: Feature Migration (8 weeks) 11

Phase 4: Testing & Optimization (4 weeks) 11

Stakeholder Communication and Training 12

Communication Plan 12

Page 1 of 14



Training Program 13

Post-Migration Support and Maintenance 13

Issue Tracking and Resolution 13

Maintenance Schedule 13

Performance and Stability Monitoring 14

Conclusion and Next Steps 14

Key Takeaways 14

Immediate Actions 14

Measuring Success 14

Page 2 of 14



Introduction and Background

This document outlines a proposal from Docupal Demo, LLC for migrating your
existing Ember.js application to a more modern and supported version. Our goal is
to provide a clear path for upgrading your application, ensuring its long-term
maintainability, performance, and access to the latest features.

Current Application State

Your application is currently running on Ember.js version 2.18, utilizing the Ember
CLI build tool. While this version has served its purpose, it is now outdated and no
longer receives long-term support (LTS) from the Ember.js core team.

Migration Drivers

Several key factors necessitate this migration:

LTS Requirement: Maintaining an application on an unsupported Ember.js
version poses security risks and limits access to critical bug fixes and security
patches. Upgrading to a supported LTS version (4.x) ensures ongoing stability
and security.
Performance Improvements: Newer Ember.js versions include significant
performance enhancements, leading to a faster and more responsive user
experience.
Modern Features: Upgrading unlocks access to modern Ember.js features and
best practices, allowing for more efficient development and improved code
maintainability.
Reduced Technical Debt: By migrating, we can address accumulated technical
debt and improve the overall architecture of the application, making it easier to
maintain and extend in the future.

Project Objectives

The primary objectives of this migration project are:

Upgrade to Ember.js 4.x: The immediate goal is to successfully migrate the
application to a supported Ember.js 4.x version.

Page 3 of 14



Improve Application Performance: We aim to optimize the application's
performance, resulting in faster load times and a smoother user experience.
Reduce Technical Debt: Refactoring and modernizing the codebase will reduce
technical debt, making the application more maintainable and scalable.

Current Architecture and Codebase
Analysis

Our analysis of the current application provides a clear picture of its architecture,
dependencies, and overall code health. This understanding is crucial for planning an
effective migration strategy.

Architecture Overview

The application primarily follows the Model-View-Controller (MVC) architectural
pattern. We also see the adoption of component-based architecture in certain areas.
This hybrid approach suggests a gradual shift towards componentization, which is
a positive trend for maintainability. However, inconsistencies in applying these
patterns could lead to increased complexity.

Dependency Analysis

The application relies on Ember.js version 2.18. This version is significantly
outdated, missing many performance improvements and features available in newer
Ember versions. We also noted the use of Ember Data for data management and
jQuery for DOM manipulation. A detailed list of all dependencies, including
community addons and their respective versions, is available in the package.json
file. Reviewing these dependencies is important to identify potential compatibility
issues during the migration.

Codebase Health and Technical Debt

Our assessment revealed several pain points and areas of technical debt.

Outdated Dependencies: Using Ember.js 2.18 means the application is missing
out on modern features and performance enhancements. It also increases the
risk of security vulnerabilities.

Page 4 of 14



Performance Bottlenecks: Certain complex components exhibit performance
issues. These bottlenecks likely stem from inefficient rendering or data
handling.
Lack of Automated Testing: The existing test coverage is insufficient. This
makes it difficult to ensure the application's stability during and after the
migration.

The chart visualizes the distribution of technical debt across key areas. Addressing
these issues will be a key focus of the migration process.

Migration Strategy and Approach

We propose an incremental migration strategy for DocuPal Demo, LLC's Ember.js
application. This approach minimizes disruption and risk. It allows for a gradual
transition to a modern Ember.js version. We will focus on upgrading the application
route by route. This ensures that existing functionality remains stable while new
features are developed on the updated framework.

Incremental Migration Methodology

Our incremental migration will follow these steps:

1. Assessment and Planning: A thorough review of the current application.
Identification of dependencies, deprecated features, and potential migration
challenges. We will create a detailed migration plan. This plan will outline the
order of route upgrades and resource allocation.

2. Ember CLI Update: Utilize Ember CLI to update the application's core
dependencies. This includes Ember.js, Ember Data, and other essential
packages. We will address any compatibility issues that arise during the update
process.

3. Route-by-Route Upgrades: Each route will be upgraded independently. This
involves updating templates, components, and controllers to align with the
latest Ember.js conventions. Feature flags will be used to toggle between the
old and new versions of each route. This allows for controlled testing and
rollback if necessary.

4. Component Modernization: Refactor existing components to improve
performance and maintainability. We will leverage modern Ember.js features
such as tracked properties and native classes.

Page 5 of 14



5. Testing and Quality Assurance: Rigorous testing will be conducted after each
route upgrade. This includes unit tests, integration tests, and end-to-end tests.
We will use automated testing tools to ensure code quality and prevent
regressions.

6. Deployment and Monitoring: Upgraded routes will be deployed to a staging
environment for user acceptance testing. Once approved, the changes will be
rolled out to production. We will closely monitor the application's performance
and stability after each deployment.

7. Rollback Plan: We will ensure that we have a rollback plan for each route
upgrade in case of any issues. This will allow us to quickly revert to the
previous version if necessary.

Risk Mitigation

We will minimize risks and downtime through:

Feature Flags: To control the release of new features and allow for easy
rollback.
Comprehensive Testing: To identify and fix issues before they impact users.
Rollback Plans: To quickly revert to the previous version if necessary.

Tools and Frameworks

We will leverage the following tools and frameworks to support the migration:

Ember CLI: For managing the application's build process and dependencies.
Ember Observer: For assessing the compatibility of Ember.js add-ons.
ember-cli-update: For automating the update process.
VS Code with Ember Language Server: For code editing and debugging.

Tentative Timeline

The following table provides a high-level timeline for the migration project:

Phase Duration Start Date End Date

Assessment and Planning 2 weeks 2025-08-26 2025-09-09

Ember CLI Update 1 week 2025-09-10 2025-09-17

Route-by-Route Upgrades 12 weeks 2025-09-18 2025-12-10

Page 6 of 14



Phase Duration Start Date End Date

Component Modernization 8 weeks 2025-12-11 2026-02-05

Testing and Quality Assurance 4 weeks 2026-02-06 2026-03-06

Deployment and Monitoring Ongoing 2026-03-07 Ongoing

Compatibility and Dependency
Management

The migration to Ember.js 4.12 (LTS) requires careful consideration of compatibility
and dependency management. Our approach prioritizes a stable and functional
application throughout the upgrade process.

Ember.js and Addon Versions

We will target Ember.js version 4.12, an LTS (Long Term Support) release, ensuring
stability and continued support. A key aspect involves updating Ember Data and
other essential addons to versions compatible with Ember.js 4.12. This includes a
thorough review of each addon's compatibility matrix and upgrade guides. We will
document the specific versions of each addon that are compatible and will be used
in the migrated application.

Third-Party Dependencies

Each third-party dependency will undergo a detailed evaluation. We will assess
compatibility with Ember.js 4.12. Where possible, dependencies will be updated to
compatible versions. If a dependency is incompatible and no update is available, we
will explore suitable replacements that offer similar functionality. This ensures
minimal disruption and continued feature parity.

Backend and Service Integrations

Potential integration challenges with backend APIs and other services are
anticipated. The primary concern is API version compatibility. To mitigate this, we
will implement thorough integration testing throughout the migration. This testing
will focus on ensuring that the updated Ember.js application interacts correctly with

Page 7 of 14



all backend services. Any necessary adjustments to API calls or data structures will
be identified and addressed promptly. We will document all integration points and
testing results.

Risk Assessment and Mitigation

Migrating to a newer Ember.js version carries inherent risks. We have identified
potential issues that could impact the project timeline and the quality of the final
product. We will actively monitor and control these risks throughout the migration
process.

Potential Risks

The primary risks associated with this Ember.js migration are:

Dependency Conflicts: Updating Ember.js often requires updating its
dependencies. These updates can introduce conflicts between different
packages, leading to application errors.
Unexpected Breakages: Even with thorough planning, changes in Ember.js or
its dependencies can cause unexpected breakages in existing application
functionality.
Performance Regressions: New Ember.js versions might introduce changes
that negatively impact the application's performance. This could result in
slower loading times or reduced responsiveness.

Mitigation Strategies

To minimize the impact of these risks, we will implement the following strategies:

Continuous Integration: We will use a continuous integration (CI) system to
automatically build and test the application after each code change. This allows
us to quickly identify and address dependency conflicts and unexpected
breakages.
Monitoring Tools: We will use monitoring tools to track the application's
performance before and after the migration. This will help us identify and
resolve any performance regressions.
Regular Code Reviews: We will conduct regular code reviews to ensure that all
code changes are thoroughly tested and adhere to best practices. This will help
prevent the introduction of new bugs and improve the overall quality of the

Page 8 of 14



codebase.
Detailed Migration Plan: The migration will be broken down into smaller,
manageable steps. Each step will be carefully planned and executed to
minimize the risk of introducing errors.
Comprehensive Testing: We will perform extensive testing throughout the
migration process. This will include unit tests, integration tests, and end-to-
end tests to ensure that all application functionality is working as expected.

Impact and Likelihood

The following chart visualizes the potential risks based on their impact and
likelihood:

Contingency Plans

Despite our best efforts, some risks may still materialize. In such cases, we have
developed contingency plans to minimize their impact:

Rollback Plan: If a major issue is discovered after a migration step, we will
have a rollback plan in place to quickly revert to the previous version of the
application.
Escalation Process: If a risk cannot be resolved by the development team, it
will be escalated to senior management for further assistance.

By proactively identifying and mitigating these risks, we aim to ensure a smooth
and successful Ember.js migration.

Testing and Quality Assurance Plan

We will implement a comprehensive testing and quality assurance plan. This plan
will ensure the stability and reliability of the application during and after the
Ember.js migration. Our strategy includes multiple layers of testing, focusing on
identifying and resolving issues early in the development lifecycle.

Testing Frameworks and Tools

We will use established testing frameworks to maintain code quality. Ember QUnit
will be our primary unit testing framework. We will also use Ember �রীক্ষা for
integration and end-to-end testing. These tools offer robust features for writing and

Page 9 of 14



running tests, ensuring comprehensive test coverage.

Testing Types

Our testing strategy will cover three key areas:

Unit Testing: We will test individual components and functions in isolation.
This will verify that each part of the application works correctly.
Integration Testing: We will test the interactions between different parts of
the application. This will ensure that components work together as expected.
End-to-End (E2E) Testing: We will simulate real user scenarios to test the
application's overall functionality. This will validate the entire user experience
from start to finish.

Quality Measurement and Tracking

We will use several metrics to measure and track the quality of the migration:

Code Coverage: We will monitor the percentage of code covered by tests. This
will help us identify areas that require more testing.
Performance Metrics: We will track key performance indicators, such as page
load times and response times. This will ensure that the application performs
efficiently.
User Feedback: We will collect feedback from users to identify any issues or
areas for improvement. This will help us to fine-tune the application and
improve user satisfaction. We will implement mechanisms for collecting and
analyzing user feedback throughout the migration process.

By combining these testing approaches and quality assurance measures, we aim to
deliver a stable and reliable Ember.js application.

Implementation Roadmap and Timeline

Our Ember.js migration will proceed in four distinct phases. Each phase has defined
objectives, deliverables, and resource allocations. A dedicated team consisting of
four developers, a QA engineer, and a project manager will handle the migration.

Page 10 of 14



Phase 1: Assessment (2 weeks)

The initial phase involves a thorough assessment of the current Ember.js
application. We will analyze the codebase, dependencies, and existing
infrastructure. This assessment will identify potential risks and challenges
associated with the migration. The key deliverable is a detailed migration plan.

Phase 2: Upgrade Core (4 weeks)

This phase focuses on upgrading the core Ember.js framework and its core
dependencies. We will address any breaking changes and ensure the application's
basic functionality remains intact. This phase is critical and must be completed
before feature migrations can begin.

Phase 3: Feature Migration (8 weeks)

During this phase, we will migrate individual features and components to the new
Ember.js version. We will prioritize features based on their impact and complexity.
Thorough testing will be conducted after each feature migration to ensure
functionality and stability.

Phase 4: Testing & Optimization (4 weeks)

The final phase involves comprehensive testing of the entire application. This
includes unit, integration, and user acceptance testing. We will also optimize the
application for performance and stability. The deliverable is a fully migrated and
optimized Ember.js application.

The following is a grant chart visualizing the timeline for the migration:

Page 11 of 14



Stakeholder Communication and
Training

Effective communication and comprehensive training are crucial for a successful
Ember.js migration. Our plan focuses on keeping all stakeholders informed and
equipping our team with the skills needed for the updated framework.

Communication Plan

We will use multiple channels to keep everyone updated. Expect daily stand-ups for
the development team. Weekly progress reports will summarize accomplishments,
challenges, and upcoming tasks. A dedicated Slack channel will facilitate quick
questions and answers. Bi-weekly stakeholder meetings will provide a platform for
demonstrations, discussions, and feedback. Key stakeholders include the CTO,
development team lead, product owner, and select end-users. This ensures all
perspectives are considered throughout the migration.

Page 12 of 14



Training Program

To ensure a smooth transition, we will provide targeted training. The development
team will receive training on Ember.js 4.x features. This will cover new APIs, best
practices, and tooling. Modern JavaScript concepts will also be covered. This will
include ES6+ features and related libraries. We will emphasize testing best practices
to maintain application quality. Training materials will include documentation,
tutorials, and hands-on exercises. Training will be tailored to different skill levels.
This will ensure everyone can contribute effectively to the migration effort. The
training will address common migration challenges. It will also cover strategies for
troubleshooting and debugging.

Post-Migration Support and
Maintenance

Following the Ember.js migration, Docupal Demo, LLC will provide comprehensive
support and maintenance to ensure the application's ongoing stability and
performance. Our approach focuses on proactive monitoring, timely issue
resolution, and continuous improvement.

Issue Tracking and Resolution

We will use a centralized issue tracker, Jira, to manage and resolve any post-
migration issues. A dedicated support team will be responsible for monitoring the
issue tracker, prioritizing issues, and coordinating with the development team for
resolution. Our team will categorize issues based on severity and impact, ensuring
critical issues are addressed promptly.

Maintenance Schedule

Our maintenance plan includes weekly maintenance releases to address bug fixes
and minor enhancements. We will also schedule quarterly major updates to
incorporate new features, performance improvements, and Ember.js version
upgrades. Security patches will be applied as needed to address any vulnerabilities.

Page 13 of 14



Performance and Stability Monitoring

To maintain optimal application performance and stability, we will use New Relic
and the Ember Performance Monitoring addon. These tools will provide real-time
insights into application performance, allowing us to identify and resolve
bottlenecks proactively. Regular load testing will be conducted to ensure the
application can handle expected traffic volumes. We will establish performance
baselines and track key metrics to identify any performance regressions.

Conclusion and Next Steps

This migration is essential. It addresses maintainability, boosts performance, and
strengthens security. Stakeholder backing is crucial for success.

Key Takeaways

We've detailed a clear path. This path leads to a modern, efficient Ember.js
application. The migration enhances user experience and reduces technical debt.

Immediate Actions

Upon approval, we need to act swiftly. First, we will secure the allocated budget.
Next, we will assign the necessary resources. Then, we will communicate the
detailed migration plan to all stakeholders. This ensures everyone is informed and
aligned.

Measuring Success

Post-migration, success will be measured objectively. We'll track performance
improvements using defined metrics. A decrease in bug reports will indicate
enhanced stability. Increased developer satisfaction, measured via survey, will show
improved development workflows. These factors will confirm a successful
migration.

Page 14 of 14


