
Table of Contents
Introduction 3

The Need for Ember.js Optimization 3

Addressing Current Challenges 3

Current Performance Assessment 3

Key Performance Indicators 3

Performance Benchmarks 4

Detailed Findings 4

Rendering Optimization Strategies 5

Code Splitting and Route Optimization 5

Minimizing Template Re-renders 5

Ember Run-Loop Management 5

Data Management and Ember Data Optimization 6

Efficient Data Fetching 6

Caching Strategies 6

Ember Data Optimization 6

Build and Deployment Optimization 7

Build Optimization 7

Asset Management 7

FastBoot for Server-Side Rendering 7

Further Build Process Improvements 8

Asynchronous and Lazy Loading Enhancements 8

Asynchronous Rendering 8

Route-Based Lazy Loading 8

Deferred Asset Loading 9

Addressing Potential Pitfalls 9

Benchmarking and Metrics for Continuous Improvement 9

Key Performance Indicators (KPIs) 9

Monitoring and Benchmarking 9

Tools for Automated Monitoring 10

Conclusion and Recommendations 10

Prioritized Actions 10

Tracking and Reporting 10

Long-Term Maintenance 11

Page 1 of 12



Appendix and References 11

Supporting Resources 11

Code Samples and Configurations 11

External Tools and Libraries 11

Additional Information 12

Page 2 of 12



Introduction

This document outlines a proposal from Docupal Demo, LLC to optimize the
performance of Acme, Inc's Ember.js application. Our primary goal is to
significantly improve application speed, reduce load times, and create a better user
experience.

The Need for Ember.js Optimization

Ember.js performance is critical for ACME-1. A fast and responsive application is
essential for maintaining user engagement. It also supports complex user
interactions and helps ACME-1 stay competitive in the market.

Addressing Current Challenges

Currently, ACME-1 faces challenges with slow initial load times. Users are also
experiencing sluggishness during UI interactions. Inefficient data handling further
contributes to these performance issues. This proposal directly addresses these pain
points through targeted optimization strategies. Our approach will focus on
streamlining code, optimizing data flow, and leveraging Ember.js best practices to
create a faster, more efficient application for ACME-1.

Current Performance Assessment

ACME-1's Ember.js application performance has been thoroughly assessed. We used
Ember Inspector, Chrome DevTools, and custom performance timers. These tools
provided detailed insights into the application's behavior. Our assessment focused
on identifying key bottlenecks and comparing performance against industry
standards.

Key Performance Indicators

Our analysis revealed several areas needing improvement. Excessive template re-
renders significantly impact UI responsiveness. Inefficient data fetching slows
down data loading. Large asset sizes increase initial load times.

Page 3 of 12



Performance Benchmarks

Metric Current Value Industry Standard

Initial Load Time 4.5 seconds 2.5 seconds

UI Responsiveness 60 ms 16 ms

CPU Usage (Idle) 15% 5%

These figures highlight the gap between the current state and optimal performance.

Detailed Findings

Template Re-renders

The application experiences a high number of unnecessary template re-renders.
This leads to increased CPU usage and reduced UI responsiveness. Optimizing
component rendering and data binding strategies are crucial.

Data Fetching

Current data fetching methods are not efficient. Multiple requests for small
amounts of data cause delays. Implementing more efficient data fetching strategies,
such as batching or GraphQL, can improve performance.

Asset Sizes

Large asset sizes contribute to slow initial load times. Unoptimized images and
excessive JavaScript code are the main culprits. Compressing assets and
implementing code splitting can reduce asset sizes.

Comparison to Industry Standards

The application lags behind industry standards in initial load time and UI
responsiveness. This impacts user experience and can lead to user frustration.
Addressing the identified bottlenecks is essential to meet industry benchmarks.

Page 4 of 12



Rendering Optimization Strategies

Efficient rendering is crucial for ACME-1 to deliver a smooth and responsive user
experience. Several strategies can be employed to optimize Ember.js rendering
without compromising functionality.

Code Splitting and Route Optimization

We propose splitting the application code into smaller, manageable chunks. This
approach reduces the initial load time, as the browser only downloads the code
necessary for the current route. Route optimization ensures that transitions
between different sections of the application are seamless and quick, enhancing
perceived performance. Lazy loading assets like images and components that are
not immediately visible will further improve initial load times.

Minimizing Template Re-renders

Unnecessary template re-renders can significantly impact performance. We
recommend implementing the following best practices:

Immutable Data: Utilize immutable data structures to ensure that changes
trigger re-renders only when necessary.
Trackable Properties: Employ trackable properties to precisely control when
components update, avoiding unnecessary re-renders.
Avoid Unnecessary Observers: Carefully evaluate the need for observers, as
they can trigger frequent updates. Consider alternative approaches like
computed properties where appropriate.

Ember Run-Loop Management

The Ember run-loop manages the execution of tasks within the application.
Inefficient management of the run-loop can lead to delays and performance
bottlenecks. To optimize the run-loop, we suggest the following:

Debouncing: Debounce actions that trigger frequent updates, such as user
input, to avoid excessive rendering.
Throttling: Throttling limits the rate at which a function is executed,
preventing performance issues caused by rapid updates.

Page 5 of 12



Run-Loop Awareness: Understand how Ember's run-loop works to schedule
tasks efficiently, and avoid long-running operations within the run-loop.

Data Management and Ember Data
Optimization

Data management is crucial for ACME-1's Ember.js application performance. We will
focus on efficient data fetching, caching strategies, and Ember Data optimization.

Efficient Data Fetching

We recommend using JSON:API with included resources to reduce network requests.
GraphQL is another strong option, allowing clients to request only the necessary
data. This avoids over-fetching and improves load times.

This chart shows the improvement in data load times using JSON:API and GraphQL
compared to the current implementation. The numbers represent milliseconds.

Caching Strategies

Implementing robust caching mechanisms will significantly improve
responsiveness. We will leverage in-memory caching for frequently accessed data.
This reduces the need to fetch data from the server repeatedly. Ember Data's built-in
caching can be configured to suit ACME-1's specific needs. We will explore
additional caching layers like local storage or service worker caching for further
optimization.

Ember Data Optimization

Optimizing Ember Data configurations is key to minimizing overhead. We will fine-
tune adapter and serializer settings to reduce the amount of data transferred.
Efficient relationship management is also essential. We will ensure that
relationships are correctly defined and loaded only when needed. This prevents
unnecessary data fetching and improves application performance. Furthermore,

Page 6 of 12



payload size optimization can be achieved through techniques such as field
selection and data compression. We will conduct a thorough analysis of ACME-1's
data models to identify areas for improvement.

Build and Deployment Optimization

Effective build and deployment strategies are vital for optimizing Ember.js
application performance. We will focus on key areas to improve speed and efficiency
for ACME-1.

Build Optimization

We will enhance your application's build process. Minification will reduce the size of
your JavaScript and CSS files. Tree shaking will eliminate unused code, leading to
smaller bundles. Utilizing production builds ensures that development-specific
code is excluded, further reducing the application's footprint. These steps combined
result in faster load times and improved overall performance.

Asset Management

Optimizing how assets are handled is critical. Image optimization techniques, such
as compression and appropriate file formats, will reduce image sizes without
sacrificing quality. We will implement Content Delivery Networks (CDNs) to
distribute assets globally, reducing latency for users regardless of their location.
Furthermore, we will leverage browser caching to store assets locally, minimizing
the need to re-download them on subsequent visits.

FastBoot for Server-Side Rendering

FastBoot will be integrated to improve server-side rendering. This offers several
benefits, including improved Search Engine Optimization (SEO) as search engines
can crawl rendered content more easily. Users will experience a faster initial render,
leading to a better perceived performance. First-time visitors will benefit from a
fully rendered page served directly from the server, improving their initial
experience and reducing the time to interactive.

Page 7 of 12



Further Build Process Improvements

To further optimize the build process, we will explore advanced techniques. Code
splitting will divide the application into smaller chunks, allowing browsers to
download only the necessary code for each route or feature. This reduces the initial
load time and improves responsiveness. By implementing these strategies, ACME-1
can achieve faster startup times and a more efficient application.

Asynchronous and Lazy Loading
Enhancements

Asynchronous and lazy loading techniques can significantly improve ACME-1's
Ember.js application performance. We propose strategies to reduce initial load times
and enhance responsiveness by loading resources only when they are needed.

Asynchronous Rendering

Ember.js provides several APIs to facilitate asynchronous rendering. We recommend
leveraging RSVP.hash to manage multiple promises within routes, ensuring data
dependencies are resolved before rendering components. Additionally,
Ember.run.later can defer non-critical UI updates, preventing blocking of the main
thread. The {{await}} helper offers a clean and declarative way to handle
asynchronous values directly in templates. Implementing these techniques will
prevent long loading times.

Route-Based Lazy Loading

We will implement route-based lazy loading to load modules and components only
when a specific route is accessed. This approach minimizes the initial payload size.
The Ember Router will be configured to load route definitions and associated assets
on demand.

Deferred Asset Loading

Non-critical assets, such as images and fonts, will be loaded using lazy loading
techniques. This involves loading these assets only when they are about to become
visible in the viewport. We will use libraries like ember-lazy-load or native browser

Page 8 of 12



APIs like IntersectionObserver to efficiently manage deferred asset loading.

Addressing Potential Pitfalls

Implementing deferred loading requires careful consideration to avoid common
pitfalls. We will prioritize loading critical resources to ensure a usable initial
experience. User experience will be closely monitored to prevent delays. Robust
error handling will be implemented to gracefully manage loading failures.

Benchmarking and Metrics for
Continuous Improvement

To ensure sustained performance gains, ACME-1 requires ongoing monitoring and
regular benchmarking. This section outlines the key performance indicators (KPIs)
and methods Docupal Demo, LLC will use to track improvements and identify areas
for further optimization.

Key Performance Indicators (KPIs)

Docupal Demo, LLC will monitor the following KPIs:

Page Load Time: The time it takes for a page to fully load.
Time to First Interaction: The time it takes for a user to be able to interact with
the page.
Frames Per Second (FPS): A measure of the smoothness of animations and
transitions.

Monitoring and Benchmarking

Docupal Demo, LLC will benchmark performance regularly, such as monthly or after
major feature releases. This allows for tracking the impact of changes and
identifying regressions. Performance data will be visualized using area charts to
easily identify trends and anomalies over time.

Tools for Automated Monitoring

Docupal Demo, LLC will leverage tools to automate performance monitoring and
reporting. These tools include:

Page 9 of 12



New Relic: A comprehensive monitoring platform for web applications.
Datadog: A monitoring and analytics platform for cloud-scale applications.
Custom Monitoring Scripts: Tailored scripts to collect specific performance
data relevant to ACME-1's Ember.js application.

These tools will provide real-time insights into application performance, enabling
proactive identification and resolution of issues.

Conclusion and Recommendations

Our analysis identified key areas for performance improvement within ACME-1's
Ember.js application. We propose a focused optimization strategy to address these
areas.

Prioritized Actions

We recommend prioritizing the following actions:

Optimize data fetching: Improve the efficiency of data retrieval processes.
Reduce template re-renders: Minimize unnecessary re-rendering of
templates.
Implement lazy loading: Load resources only when needed to reduce initial
load time.

Tracking and Reporting

To ensure transparency and track progress, we will use project management tools.
Regular performance reports will provide detailed insights into the impact of the
optimizations. This will include metrics such as page load times and rendering
performance.

Long-Term Maintenance

Sustained performance requires ongoing effort. We suggest the following for long-
term maintenance:

Continuous monitoring: Proactively identify and address potential
performance bottlenecks.

Page 10 of 12



Regular code reviews: Ensure code quality and adherence to performance best
practices.
Stay updated: Keep up-to-date with the latest Ember.js updates and best
practices.

Appendix and References

Supporting Resources

This proposal is supported by several key resources within the Ember.js ecosystem
and broader web development community. These resources provide detailed
information and best practices that underpin the optimization strategies outlined.

Ember.js Official Documentation: https://emberjs.com/api/
Ember.js Guides: https://guides.emberjs.com/
Ember Observer: https://emberobserver.com/

Code Samples and Configurations

Examples of optimized Ember.js components, efficient data fetching techniques,
and recommended build configurations are available upon request. These code
snippets will illustrate the practical implementation of the proposed performance
enhancements.

External Tools and Libraries

The following external tools and libraries are recommended to support the
optimization efforts:

Lodash: A JavaScript utility library delivering modularity, performance &
extras.
Moment.js: A JavaScript date library for parsing, validating, manipulating, and
formatting dates.
Image Optimization Tools: Tools for compressing and optimizing images to
reduce file sizes and improve loading times.

Page 11 of 12



Additional Information

Supplementary information, including references to Ember.js documentation,
profiling tools, and relevant articles on web performance optimization, can be
provided as needed. Profiling tools like Ember Inspector and browser developer
tools will be used to measure the impact of optimizations.

Page 12 of 12


